Meshfree Generalized Multiscale Finite Element Method

被引:9
|
作者
Nikiforov, Djulustan [1 ]
机构
[1] North Eastern Fed Univ, Yakutsk, Russia
关键词
Generalized multiscale finite element; method; Meshfree method; Fractured domain; DISCONTINUOUS GALERKIN METHOD; UNSTRUCTURED GRIDS; ELLIPTIC PROBLEMS; VOLUME METHOD; FLOW; EQUATION;
D O I
10.1016/j.jcp.2022.111798
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a new multiscale approach with a meshfree coarse scale. A coarse scale is constructed on the basis of an already existing computational grid on a fine scale, depending on the heterogeneous parameters of the problem. This approach is based on the Generalized Multiscale Finite Element Method (GMsFEM), where the heterogeneous parameters of the problem are taken into account on a coarse scale using multiscale basis functions. These multiscale basis functions are constructed at an offline stage using local spectral problems. To represent the fractures on a fine grid, the Discrete Fracture Model (DFM) is used. The results of a numerical solution for two-dimensional and three-dimensional problems are presented.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR THE STEADY STATE LINEAR BOLTZMANN EQUATION
    Chung, Eric
    Efendiev, Yalchin
    Li, Yanbo
    Li, Qin
    MULTISCALE MODELING & SIMULATION, 2020, 18 (01): : 475 - 501
  • [32] Application of the generalized multiscale finite element method in an inverse random source problem
    Fu, Shubin
    Zhang, Zhidong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [33] On-the-fly multiscale analysis of composite materials with a Generalized Finite Element Method
    Mazurowski, B.
    O'Hara, P.
    Duarte, C. A.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 236
  • [34] Generalized Multiscale Finite Element Method for Multicontinuum Coupled Flow and Transport Model
    D. A. Ammosov
    J. Huang
    W. T. Leung
    B. Shan
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5343 - 5356
  • [35] Generalized multiscale finite element method. Symmetric interior penalty coupling
    Efendiev, Y.
    Galvis, J.
    Lazarov, R.
    Moon, M.
    Sarkis, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 : 1 - 15
  • [36] A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling
    Brown, Donald L.
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 297 : 132 - 146
  • [37] A generalized multiscale finite element method for elastic wave propagation in fractured media
    Chung E.T.
    Efendiev Y.
    Gibson R.L., Jr.
    Vasilyeva M.
    GEM - International Journal on Geomathematics, 2016, 7 (2) : 163 - 182
  • [38] Mixed Generalized Multiscale Finite Element Method for flow problem in thin domains
    Spiridonov, Denis
    Vasilyeva, Maria
    Wang, Min
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [39] A Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems
    Brown, Donald L.
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 294 : 372 - 388
  • [40] Generalized Multiscale Finite Element Method for thermoporoelasticity problems in heterogeneous and fractured media
    Ammosov, Dmitry
    Vasilyeva, Maria
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407