G-matrices

被引:21
|
作者
Fiedler, Miroslav [1 ]
Hall, Frank J. [2 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
G-matrix; Cauchy matrix; Sign pattern matrix; Potentially orthogonal sign pattern; COMPLEMENTARY BASIC MATRICES;
D O I
10.1016/j.laa.2011.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a new type of matrix called G-matrix as a real nonsingular matrix A for which there exist nonsingular diagonal matrices D(1) and D(2) such that (A(-1))(T) = D(1)AD(2). Many special matrices are G-matrices including (generalized) Cauchy matrices and orthogonal matrices. A number of properties of G-matrices are obtained. Sign patterns of G-matrices are also investigated. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:731 / 741
页数:11
相关论文
共 50 条
  • [1] More on G-matrices
    Fiedler, Miroslav
    Markham, Thomas L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 231 - 241
  • [2] A note on generalized G-matrices
    Matsuura, Masaya
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3475 - 3479
  • [3] A NOTE ON SOME CLASSES OF G-MATRICES
    Motlaghian, Sara M.
    Armandnejad, Ali
    Hall, Frank J.
    OPERATORS AND MATRICES, 2022, 16 (01): : 251 - 263
  • [4] RATIONAL G-MATRICES WITH RATIONAL EIGENVALUES
    BRIDGES, WG
    MENA, RA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (02) : 264 - 280
  • [5] G-matrices, J-orthogonal matrices, and their sign patterns
    Frank J. Hall
    Miroslav Rozložník
    Czechoslovak Mathematical Journal, 2016, 66 : 653 - 670
  • [6] ON THE G-MATRICES WITH ENTRIES AND EIGENVALUES IN Q(I)
    HOU, XD
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 53 - 64
  • [7] G-matrices, J-orthogonal matrices, and their sign patterns
    Hall, Frank J.
    Rozloznik, Miroslav
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 653 - 670
  • [8] G-matrices for algebraically stable general linear methods
    A. T. Hill
    Numerical Algorithms, 2010, 53 : 281 - 292
  • [9] G-matrices for algebraically stable general linear methods
    Hill, A. T.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 281 - 292
  • [10] A TEST OF THE CONJECTURE THAT G-MATRICES ARE MORE STABLE THAN B-MATRICES
    Barker, Brittany S.
    Phillips, Patrick C.
    Arnold, Stevan J.
    EVOLUTION, 2010, 64 (09) : 2601 - 2613