G-matrices for algebraically stable general linear methods

被引:0
|
作者
A. T. Hill
机构
[1] University of Bath,Department of Mathematical Sciences
来源
Numerical Algorithms | 2010年 / 53卷
关键词
General linear methods; -matrix; 65L06; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes a technique from Control whereby the G-matrix for an algebraically stable general linear method may be found in terms of the generalised eigenvectors of a generalised eigenproblem associated with the method.
引用
收藏
页码:281 / 292
页数:11
相关论文
共 50 条
  • [1] G-matrices for algebraically stable general linear methods
    Hill, A. T.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 281 - 292
  • [2] Algebraically stable general linear methods and the G-matrix
    L. L. Hewitt
    A. T. Hill
    BIT Numerical Mathematics, 2009, 49 : 93 - 111
  • [3] Algebraically stable general linear methods and the G-matrix
    Hewitt, L. L.
    Hill, A. T.
    BIT NUMERICAL MATHEMATICS, 2009, 49 (01) : 93 - 111
  • [4] Algebraically stable diagonally implicit general linear methods
    Hewitt, L. L.
    Hill, A. T.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (06) : 629 - 636
  • [5] Algebraically stable diagonally implicit general linear methods
    Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
    Appl Numer Math, 1600, 6 (629-636):
  • [6] G-matrices
    Fiedler, Miroslav
    Hall, Frank J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 731 - 741
  • [7] More on G-matrices
    Fiedler, Miroslav
    Markham, Thomas L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 231 - 241
  • [8] A TEST OF THE CONJECTURE THAT G-MATRICES ARE MORE STABLE THAN B-MATRICES
    Barker, Brittany S.
    Phillips, Patrick C.
    Arnold, Stevan J.
    EVOLUTION, 2010, 64 (09) : 2601 - 2613
  • [9] A note on generalized G-matrices
    Matsuura, Masaya
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3475 - 3479
  • [10] A NOTE ON SOME CLASSES OF G-MATRICES
    Motlaghian, Sara M.
    Armandnejad, Ali
    Hall, Frank J.
    OPERATORS AND MATRICES, 2022, 16 (01): : 251 - 263