More on G-matrices

被引:7
|
作者
Fiedler, Miroslav [1 ]
Markham, Thomas L. [2 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Cauchy matrix; G-matrix; Complex orthogonal matrix;
D O I
10.1016/j.laa.2012.07.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first author and Hall defined recently a G-matrix as a real non-singular matrix A such that there exist diagonal matrices D-1 and D-2 for which (A(T))(-1) = D(1)AD(2). The class of G-matrices was shown to possess interesting properties. In this paper, some new characterizations are found and extensions to rectangular and complex matrices are discussed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [1] G-matrices
    Fiedler, Miroslav
    Hall, Frank J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 731 - 741
  • [2] A TEST OF THE CONJECTURE THAT G-MATRICES ARE MORE STABLE THAN B-MATRICES
    Barker, Brittany S.
    Phillips, Patrick C.
    Arnold, Stevan J.
    EVOLUTION, 2010, 64 (09) : 2601 - 2613
  • [3] A note on generalized G-matrices
    Matsuura, Masaya
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3475 - 3479
  • [4] A NOTE ON SOME CLASSES OF G-MATRICES
    Motlaghian, Sara M.
    Armandnejad, Ali
    Hall, Frank J.
    OPERATORS AND MATRICES, 2022, 16 (01): : 251 - 263
  • [5] RATIONAL G-MATRICES WITH RATIONAL EIGENVALUES
    BRIDGES, WG
    MENA, RA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (02) : 264 - 280
  • [6] G-matrices, J-orthogonal matrices, and their sign patterns
    Frank J. Hall
    Miroslav Rozložník
    Czechoslovak Mathematical Journal, 2016, 66 : 653 - 670
  • [7] ON THE G-MATRICES WITH ENTRIES AND EIGENVALUES IN Q(I)
    HOU, XD
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 53 - 64
  • [8] G-matrices, J-orthogonal matrices, and their sign patterns
    Hall, Frank J.
    Rozloznik, Miroslav
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 653 - 670
  • [9] G-matrices for algebraically stable general linear methods
    A. T. Hill
    Numerical Algorithms, 2010, 53 : 281 - 292
  • [10] G-matrices for algebraically stable general linear methods
    Hill, A. T.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 281 - 292