More on G-matrices

被引:7
|
作者
Fiedler, Miroslav [1 ]
Markham, Thomas L. [2 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Cauchy matrix; G-matrix; Complex orthogonal matrix;
D O I
10.1016/j.laa.2012.07.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first author and Hall defined recently a G-matrix as a real non-singular matrix A such that there exist diagonal matrices D-1 and D-2 for which (A(T))(-1) = D(1)AD(2). The class of G-matrices was shown to possess interesting properties. In this paper, some new characterizations are found and extensions to rectangular and complex matrices are discussed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [31] More on the Wilson Wtk(v) matrices
    Ahmadi, M. H.
    Akhlaghinia, N.
    Khosrovshahi, G. B.
    Maysoori, Ch
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02):
  • [32] Matrices and much, much more - Matlab
    Foster, KR
    IEEE SPECTRUM, 1997, 34 (02) : 14 - 14
  • [33] MORE TEST MATRICES FOR DETERMINANTS AND INVERSES
    ENGLAR, TS
    COMMUNICATIONS OF THE ACM, 1963, 6 (12) : 745 - 745
  • [34] MORE ON ROUTHS ARRAY AND BEZOUTIAN MATRICES
    BARNETT, S
    MAROULAS, J
    INTERNATIONAL JOURNAL OF CONTROL, 1978, 28 (05) : 657 - 664
  • [35] The geometric mean, matrices, metrics, and more
    Lawson, JD
    Lim, YD
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (09): : 797 - 812
  • [36] BALANCED MATRICES AND PROPERTY (G)
    BERGE, C
    MATHEMATICAL PROGRAMMING STUDY, 1980, 12 (APR): : 163 - 175
  • [37] ON THE g-CIRCULANT MATRICES
    Bahsi, Mustafa
    Solak, Suleyman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 695 - 704
  • [38] (LAMBDA, G)-CRITICAL MATRICES
    DASILVA, JAD
    COELHO, MD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 140 : 1 - 11
  • [39] MORE ON VARYING G
    ARP, H
    PHYSICS TODAY, 1981, 34 (03) : 78 - 78
  • [40] ORTHOGONAL PROCRUSTES ROTATION FOR 2 OR MORE MATRICES
    Ten Berge, JMF
    PSYCHOMETRIKA, 1977, 42 (02) : 267 - 276