G-matrices

被引:21
|
作者
Fiedler, Miroslav [1 ]
Hall, Frank J. [2 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
G-matrix; Cauchy matrix; Sign pattern matrix; Potentially orthogonal sign pattern; COMPLEMENTARY BASIC MATRICES;
D O I
10.1016/j.laa.2011.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a new type of matrix called G-matrix as a real nonsingular matrix A for which there exist nonsingular diagonal matrices D(1) and D(2) such that (A(-1))(T) = D(1)AD(2). Many special matrices are G-matrices including (generalized) Cauchy matrices and orthogonal matrices. A number of properties of G-matrices are obtained. Sign patterns of G-matrices are also investigated. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:731 / 741
页数:11
相关论文
共 50 条
  • [21] Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multireference spin-orbit configuration interaction wave functions
    Tatchen, Joerg
    Kleinschmidt, Martin
    Marian, Christel M.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (15):
  • [22] BALANCED MATRICES AND PROPERTY (G)
    BERGE, C
    MATHEMATICAL PROGRAMMING STUDY, 1980, 12 (APR): : 163 - 175
  • [23] ON THE g-CIRCULANT MATRICES
    Bahsi, Mustafa
    Solak, Suleyman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 695 - 704
  • [24] (LAMBDA, G)-CRITICAL MATRICES
    DASILVA, JAD
    COELHO, MD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 140 : 1 - 11
  • [25] On (g,4;1)-difference matrices
    Ge, GN
    DISCRETE MATHEMATICS, 2005, 301 (2-3) : 164 - 174
  • [26] Comparing G matrices: A MANOVA approach
    Roff, D
    EVOLUTION, 2002, 56 (06) : 1286 - 1291
  • [27] On the non-existence of (g, gλ-1; λ)-difference matrices
    Winterhof, A
    ARS COMBINATORIA, 2002, 64 : 265 - 269
  • [28] STEPHENSON,G - AN INTRODUCTION TO MATRICES SETS AND GROUPS
    SVED, M
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (03): : 476 - &
  • [29] The g-theorem matrices are totally nonnegative
    Bjorklund, Michael
    Engstrom, Alexander
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (03) : 730 - 732
  • [30] THEOREM OF RAO ON G-INVERSES OF MATRICES
    BHIMASANKARAM, P
    MITRA, SK
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1969, 31 (SEP): : 365 - 368