A De Bruijn-Erdos theorem for chordal graphs

被引:0
|
作者
Beaudou, Laurent [1 ]
Bondy, Adrian [2 ]
Chen, Xiaomin [3 ]
Chiniforooshan, Ehsan [4 ]
Chudnovsky, Maria [5 ]
Chvatal, Vasek [6 ]
Fraiman, Nicolas [7 ]
Zwols, Yori [6 ]
机构
[1] Univ Clermont Ferrand, Clermont Ferrand, France
[2] Univ Paris 06, Paris, France
[3] Shanghai Jianshi Ltd, Shanghai, Peoples R China
[4] Google Kitchener Waterloo, Waterloo, ON, Canada
[5] Columbia Univ, New York, NY USA
[6] Concordia Univ, Montreal, PQ, Canada
[7] Univ Montreal, Montreal, PQ, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 01期
关键词
Combinatorial geometry; Metric space; Extremal combinatorics; METRIC-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A special case of a combinatorial theorem of De Bruijn and Erdos asserts that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvatal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces induced by connected chordal graphs.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A stability version for a theorem of Erdos on nonhamiltonian graphs
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    DISCRETE MATHEMATICS, 2017, 340 (11) : 2688 - 2690
  • [42] Embedding Cartesian Products of Graphs into de Bruijn Graphs
    J Parallel Distrib Comput, 2 (194):
  • [43] Indexing De Bruijn graphs with minimizers
    Marchet, Camille
    Kerbiriou, Mael
    Limasset, Antoine
    BMC BIOINFORMATICS, 2019, 20
  • [44] Independence number of de Bruijn graphs
    Lichiardopol, N
    DISCRETE MATHEMATICS, 2006, 306 (12) : 1145 - 1160
  • [45] Spanners of de Bruijn and Kautz graphs
    Harbane, R
    Padro, C
    INFORMATION PROCESSING LETTERS, 1997, 62 (05) : 231 - 236
  • [46] Read mapping on de Bruijn graphs
    Limasset, Antoine
    Cazaux, Bastien
    Rivals, Eric
    Peterlongo, Pierre
    BMC BIOINFORMATICS, 2016, 17
  • [47] Wide diameters of de Bruijn graphs
    Kuo, Jyhmin
    Fu, Hung-Lin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (2-3) : 143 - 152
  • [48] The spectrum of de Bruijn and Kautz graphs
    Delorme, C
    Tillich, JP
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 307 - 319
  • [49] Edge minimization in de Bruijn graphs
    Baier, Uwe
    Buechler, Thomas
    Ohlebusch, Enno
    Weber, Pascal
    2020 DATA COMPRESSION CONFERENCE (DCC 2020), 2020, : 223 - 232
  • [50] Fully Dynamic de Bruijn Graphs
    Belazzougui, Djamal
    Gagie, Travis
    Makinen, Veli
    Previtali, Marco
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2016, 2016, 9954 : 145 - 152