A De Bruijn-Erdos theorem for chordal graphs

被引:0
|
作者
Beaudou, Laurent [1 ]
Bondy, Adrian [2 ]
Chen, Xiaomin [3 ]
Chiniforooshan, Ehsan [4 ]
Chudnovsky, Maria [5 ]
Chvatal, Vasek [6 ]
Fraiman, Nicolas [7 ]
Zwols, Yori [6 ]
机构
[1] Univ Clermont Ferrand, Clermont Ferrand, France
[2] Univ Paris 06, Paris, France
[3] Shanghai Jianshi Ltd, Shanghai, Peoples R China
[4] Google Kitchener Waterloo, Waterloo, ON, Canada
[5] Columbia Univ, New York, NY USA
[6] Concordia Univ, Montreal, PQ, Canada
[7] Univ Montreal, Montreal, PQ, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 01期
关键词
Combinatorial geometry; Metric space; Extremal combinatorics; METRIC-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A special case of a combinatorial theorem of De Bruijn and Erdos asserts that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvatal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces induced by connected chordal graphs.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Shifted de Bruijn Graphs
    Freij, Ragnar
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 195 - 202
  • [22] Manifold de Bruijn Graphs
    Lin, Yu
    Pevzner, Pavel A.
    ALGORITHMS IN BIOINFORMATICS, 2014, 8701 : 296 - 310
  • [23] Erdos-Ko-Rado theorems for chordal graphs and trees
    Hurlbert, Glenn
    Kamat, Vikram
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 829 - 841
  • [24] Bijections in de Bruijn Graphs
    Rukavicka, Josef
    ARS COMBINATORIA, 2019, 143 : 215 - 226
  • [25] Consensus on de Bruijn graphs
    G. Yan
    Z. -Q. Fu
    G. Chen
    The European Physical Journal B, 2008, 63 : 515 - 520
  • [26] Generalized de Bruijn graphs
    Malyshev, Fedor M.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2022, 32 (01): : 11 - 38
  • [27] Consensus on de Bruijn graphs
    Yan, G.
    Fu, Z. -Q.
    Chen, G.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 63 (04): : 515 - 520
  • [28] Generalized de bruijn graphs
    Zdzistaw, Grodzki
    Wronski, Aleksandr
    Journal of Information Processing and Cybernetics, 1994, 30 (01):
  • [29] Extensions of a theorem of Erdos on nonhamiltonian graphs
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    JOURNAL OF GRAPH THEORY, 2018, 89 (02) : 176 - 193
  • [30] Rooted Tree Graphs and de Bruijn Graphs
    Mayhew, Gregory L.
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,