A De Bruijn-Erdos theorem for chordal graphs

被引:0
|
作者
Beaudou, Laurent [1 ]
Bondy, Adrian [2 ]
Chen, Xiaomin [3 ]
Chiniforooshan, Ehsan [4 ]
Chudnovsky, Maria [5 ]
Chvatal, Vasek [6 ]
Fraiman, Nicolas [7 ]
Zwols, Yori [6 ]
机构
[1] Univ Clermont Ferrand, Clermont Ferrand, France
[2] Univ Paris 06, Paris, France
[3] Shanghai Jianshi Ltd, Shanghai, Peoples R China
[4] Google Kitchener Waterloo, Waterloo, ON, Canada
[5] Columbia Univ, New York, NY USA
[6] Concordia Univ, Montreal, PQ, Canada
[7] Univ Montreal, Montreal, PQ, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 01期
关键词
Combinatorial geometry; Metric space; Extremal combinatorics; METRIC-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A special case of a combinatorial theorem of De Bruijn and Erdos asserts that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvatal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces induced by connected chordal graphs.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Practical dynamic de Bruijn graphs
    Crawford, Victoria G.
    Kuhnle, Alan
    Boucher, Christina
    Chikhi, Rayan
    Gagie, Travis
    BIOINFORMATICS, 2018, 34 (24) : 4189 - 4195
  • [32] The Collatz conjecture and De Bruijn graphs
    Laarhoven, Thijs
    de Weger, Benne
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (04): : 971 - 983
  • [33] Edge minimization in de Bruijn graphs
    Baier, Uwe
    Buechler, Thomas
    Ohlebusch, Enno
    Weber, Pascal
    INFORMATION AND COMPUTATION, 2022, 285
  • [34] Bisecting de Bruijn and Kautz graphs
    Rolim, J
    Tvrdik, P
    Trdlicka, J
    Vrto, I
    DISCRETE APPLIED MATHEMATICS, 1998, 85 (01) : 87 - 97
  • [35] Additive Systems and a Theorem of de Bruijn
    Nathanson, Melvyn B.
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (01): : 5 - 17
  • [36] Succinct dynamic de Bruijn graphs
    Alipanahi, Bahar
    Kuhnle, Alan
    Puglisi, Simon J.
    Salmela, Leena
    Boucher, Christina
    BIOINFORMATICS, 2021, 37 (14) : 1946 - 1952
  • [37] Succinct colored de Bruijn graphs
    Muggli, Martin D.
    Bowe, Alexander
    Noyes, Noelle R.
    Morley, Paul S.
    Belk, Keith E.
    Raymond, Robert
    Gagie, Travis
    Puglisi, Simon J.
    Boucher, Christina
    BIOINFORMATICS, 2017, 33 (20) : 3181 - 3187
  • [38] Wide diameters of de Bruijn graphs
    Jyhmin Kuo
    Hung-Lin Fu
    Journal of Combinatorial Optimization, 2007, 14 : 143 - 152
  • [40] On the independent set of de Bruijn graphs
    Kikuchi, Yosuke
    Shibata, Yukio
    Topics in Applied and Theoretical Mathematics and Computer Science, 2001, : 117 - 122