A De Bruijn-Erdos theorem for chordal graphs

被引:0
|
作者
Beaudou, Laurent [1 ]
Bondy, Adrian [2 ]
Chen, Xiaomin [3 ]
Chiniforooshan, Ehsan [4 ]
Chudnovsky, Maria [5 ]
Chvatal, Vasek [6 ]
Fraiman, Nicolas [7 ]
Zwols, Yori [6 ]
机构
[1] Univ Clermont Ferrand, Clermont Ferrand, France
[2] Univ Paris 06, Paris, France
[3] Shanghai Jianshi Ltd, Shanghai, Peoples R China
[4] Google Kitchener Waterloo, Waterloo, ON, Canada
[5] Columbia Univ, New York, NY USA
[6] Concordia Univ, Montreal, PQ, Canada
[7] Univ Montreal, Montreal, PQ, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 01期
关键词
Combinatorial geometry; Metric space; Extremal combinatorics; METRIC-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A special case of a combinatorial theorem of De Bruijn and Erdos asserts that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvatal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces induced by connected chordal graphs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The de Bruijn-Erdos theorem for hypergraphs
    Alon, Noga
    Mellinger, Keith E.
    Mubayi, Dhruv
    Verstraete, Jacques
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) : 233 - 245
  • [2] A de Bruijn-Erdos Theorem for (q, q-4)-graphs
    Schrader, Rainer
    Stenmans, Lukas
    DISCRETE APPLIED MATHEMATICS, 2020, 279 : 198 - 201
  • [3] Problems related to a de Bruijn-Erdos theorem
    Chen, Xiaomin
    Chvatal, Vasek
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (11) : 2101 - 2108
  • [4] THE DE BRUIJN-ERDOS THEOREM FROM A HAUSDORFF MEASURE POINT OF VIEW
    Dolezal, M.
    Mitsis, T.
    Pelekis, Ch.
    ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 400 - 413
  • [5] Towards a de Bruijn-Erdos Theorem in the L1-Metric
    Kantor, Ida
    Patkos, Balazs
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (03) : 659 - 670
  • [6] A de Bruijn-Erdos theorem for 1-2 metric spaces
    Chvatal, Vasek
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 45 - 51
  • [7] Graphs with no induced house nor induced hole have the de Bruijn-Erdos property
    Aboulker, Pierre
    Beaudou, Laurent
    Matamala, Martin
    Zamora, Jose
    JOURNAL OF GRAPH THEORY, 2022, 100 (04) : 638 - 652
  • [8] GENERALIZATION OF A THEOREM OF DE BRUIJN AND ERDOS ON CHROMATIC NUMBER OF INFINITE GRAPHS
    LAKE, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) : 170 - 174
  • [9] A de Bruijn - Erdos theorem and metric spaces
    Chiniforooshan, Ehsan
    Chvatal, Vasek
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2011, 13 (01): : 67 - 74