The unitary connections on the complex Grassmann manifold

被引:3
|
作者
Lu, QK [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
[2] Shantou Univ, Math Inst, Shantou 515063, Peoples R China
基金
中国国家自然科学基金;
关键词
unitary connection; Grassmann manifold;
D O I
10.1007/BF02882265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the complex Grassmann manifold F(m, n), the space of complex n-planes passes through the origin of Cm+n; the local coordinate of the space can be arranged into an m x n matrix Z. It is proved that K = K(Z, dZ) = (I + ZZ dagger)(-1/2)partial derivative(I + ZZ dagger)(1/2) - partial derivative(I + ZZ dagger)(1/2).(I + ZZ dagger)(-1/2) is a U(m)-connection of F(m, n) and its curvature form Omega(1) = dK + K boolean AND K satisfies the Yang-Mills equation. Moreover, B = B(Z,dZ) = K(Z,dZ)- tr(K(Z,dZ))/mI(m) is an SU(m)-connection and its curvature form Omega(2)= dB + B boolean AND B satisfies the Yang-Mills equation.
引用
收藏
页码:1248 / 1254
页数:7
相关论文
共 50 条
  • [41] Locality Preserving Projections for Grassmann Manifold
    Wang, Boyue
    Hu, Yongli
    Gao, Junbin
    Sun, Yanfeng
    Chen, Haoran
    Ali, Muhammad
    Yin, Baocai
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2893 - 2900
  • [42] Canonical sphere bundles of the Grassmann manifold
    Esteban Andruchow
    Eduardo Chiumiento
    Gabriel Larotonda
    Geometriae Dedicata, 2019, 203 : 179 - 203
  • [43] Some Submanifolds of the Associative Grassmann Manifold
    Sasaki, Yuuki
    TOKYO JOURNAL OF MATHEMATICS, 2024, 47 (01) : 125 - 147
  • [44] Tian's invariant of the Grassmann manifold
    Grivaux, Julien
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) : 523 - 533
  • [45] Methods of density estimation on the Grassmann manifold
    Chikuse, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 354 (1-3) : 85 - 102
  • [46] NUCLEAR-STRUCTURE ON A GRASSMANN MANIFOLD
    DEWET, JA
    FOUNDATIONS OF PHYSICS, 1987, 17 (10) : 993 - 1018
  • [47] Local rigidity of holomorphic curves in the complex Grassmann manifold G(2,6)
    Fei, Jie
    Xu, Xiaowei
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 438 - 451
  • [48] Holomorphic two-spheres in complex Grassmann manifold G(2,4)
    Xu, Xiaowei
    Jiao, Xiaoxiang
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (03): : 381 - 388
  • [49] ON HOLOMORPHIC CURVES OF CONSTANT CURVATURE IN THE COMPLEX GRASSMANN MANIFOLD G(2,5)
    焦晓祥
    彭家贵
    Acta Mathematica Scientia, 2011, 31 (01) : 237 - 248
  • [50] Rigidity theorems for holomorphic curves in a complex Grassmann manifold G(3,6)
    Wang, Jun
    Fel, Jie
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (13)