The unitary connections on the complex Grassmann manifold

被引:3
|
作者
Lu, QK [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
[2] Shantou Univ, Math Inst, Shantou 515063, Peoples R China
基金
中国国家自然科学基金;
关键词
unitary connection; Grassmann manifold;
D O I
10.1007/BF02882265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the complex Grassmann manifold F(m, n), the space of complex n-planes passes through the origin of Cm+n; the local coordinate of the space can be arranged into an m x n matrix Z. It is proved that K = K(Z, dZ) = (I + ZZ dagger)(-1/2)partial derivative(I + ZZ dagger)(1/2) - partial derivative(I + ZZ dagger)(1/2).(I + ZZ dagger)(-1/2) is a U(m)-connection of F(m, n) and its curvature form Omega(1) = dK + K boolean AND K satisfies the Yang-Mills equation. Moreover, B = B(Z,dZ) = K(Z,dZ)- tr(K(Z,dZ))/mI(m) is an SU(m)-connection and its curvature form Omega(2)= dB + B boolean AND B satisfies the Yang-Mills equation.
引用
收藏
页码:1248 / 1254
页数:7
相关论文
共 50 条
  • [21] BILINEAR FUNCTIONALS ON GRASSMANN MANIFOLD
    MARCUS, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A546 - A546
  • [22] Embedding graphs on Grassmann manifold
    Zhou, Bingxin
    Zheng, Xuebin
    Wang, Yu Guang
    Li, Ming
    Gao, Junbin
    NEURAL NETWORKS, 2022, 152 : 322 - 331
  • [23] Bounds for codes in the grassmann manifold
    Bachoe, Christine
    Ben-Haim, Yael
    Litsyn, Simon
    2006 IEEE 24TH CONVENTION OF ELECTRICAL & ELECTRONICS ENGINEERS IN ISRAEL, 2006, : 25 - +
  • [24] Lagrangian Grassmann manifold Λ(2)
    Lei Liu
    Frontiers of Mathematics in China, 2018, 13 : 341 - 365
  • [25] q-Grassmann Manifold
    Haran, Shai M. J.
    ARITHMETICAL INVESTIGATIONS: REPRESENTATION THEORY, ORTHOGONAL POLYNOMIALS, AND QUANTUM INTERPOLATIONS, 2008, 1941 : 173 - 184
  • [26] Bounds for codes in the Grassmann manifold
    Bachoc, Christine
    Ben-Haim, Yael
    Litsyn, Simon
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1796 - +
  • [27] Cubic Splines in the Grassmann Manifold
    Pina, Fatima
    Leite, Fatima Silva
    CONTROLO 2020, 2021, 695 : 243 - 252
  • [28] STRING VERTEX ON THE GRASSMANN MANIFOLD
    SAITO, S
    PHYSICAL REVIEW D, 1988, 37 (04) : 990 - 995
  • [29] Protein Clustering on a Grassmann Manifold
    Suryanto, Chendra Hadi
    Saigo, Hiroto
    Fukui, Kazuhiro
    PATTERN RECOGNITION IN BIOINFORMATICS, 2012, 7632 : 71 - 81
  • [30] HARMONIC MAPS OF THE 2-SPHERE INTO A COMPLEX GRASSMANN MANIFOLD .2.
    CHERN, SS
    WOLFSON, JG
    ANNALS OF MATHEMATICS, 1987, 125 (02) : 301 - 335