The unitary connections on the complex Grassmann manifold

被引:3
|
作者
Lu, QK [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
[2] Shantou Univ, Math Inst, Shantou 515063, Peoples R China
基金
中国国家自然科学基金;
关键词
unitary connection; Grassmann manifold;
D O I
10.1007/BF02882265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the complex Grassmann manifold F(m, n), the space of complex n-planes passes through the origin of Cm+n; the local coordinate of the space can be arranged into an m x n matrix Z. It is proved that K = K(Z, dZ) = (I + ZZ dagger)(-1/2)partial derivative(I + ZZ dagger)(1/2) - partial derivative(I + ZZ dagger)(1/2).(I + ZZ dagger)(-1/2) is a U(m)-connection of F(m, n) and its curvature form Omega(1) = dK + K boolean AND K satisfies the Yang-Mills equation. Moreover, B = B(Z,dZ) = K(Z,dZ)- tr(K(Z,dZ))/mI(m) is an SU(m)-connection and its curvature form Omega(2)= dB + B boolean AND B satisfies the Yang-Mills equation.
引用
收藏
页码:1248 / 1254
页数:7
相关论文
共 50 条
  • [31] Holomorphic two-spheres in complex Grassmann manifold G(2, 4)
    Xiaowei Xu
    Xiaoxiang Jiao
    Proceedings Mathematical Sciences, 2008, 118 : 381 - 388
  • [32] Holomorphic two-spheres in the complex Grassmann manifold G(k, n)
    Jiao, Xiaoxiang
    Zhong, Xu
    Xu, Xiaowei
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (03): : 399 - 409
  • [33] Holomorphic two-spheres in the complex Grassmann manifold G(k, n)
    XIAOXIANG JIAO
    X U ZHONG
    XIAOWEI XU
    Proceedings - Mathematical Sciences, 2012, 122 : 399 - 409
  • [34] Pinching for holomorphic curves in a complex Grassmann manifold G(2, n; C)
    Wang, Jun
    Fei, Jie
    Xu, Xiaowei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 80
  • [35] Tian’s invariant of the Grassmann manifold
    Julien Grivaux
    The Journal of Geometric Analysis, 2006, 16 : 523 - 533
  • [36] p-Adic Grassmann Manifold
    Haran, Shai M. J.
    ARITHMETICAL INVESTIGATIONS: REPRESENTATION THEORY, ORTHOGONAL POLYNOMIALS, AND QUANTUM INTERPOLATIONS, 2008, 1941 : 157 - 171
  • [37] The space of linear maps into a Grassmann manifold
    Ben Hammouda, Walid
    Kallel, Sadok
    Salvatore, Paolo
    FORUM MATHEMATICUM, 2013, 25 (06) : 1181 - 1215
  • [38] Canonical sphere bundles of the Grassmann manifold
    Andruchow, Esteban
    Chiumiento, Eduardo
    Larotonda, Gabriel
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 179 - 203
  • [39] Lagrangian Grassmann manifold I⟩(2)
    Liu, Lei
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (02) : 341 - 365
  • [40] Bounds on packings of spheres in the Grassmann manifold
    Barg, A
    Yu, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) : 2450 - 2454