Lattices of subspaces of vector spaces with orthogonality

被引:1
|
作者
Chajda, Ivan [1 ]
Langer, Helmut [1 ,2 ]
机构
[1] Palakcy Univ Olomouc, Fac Sci, Dept Algebra & Geometry, 17 Listopadu 12, Olomouc 77146, Czech Republic
[2] Fac Math & Geoinformat, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Vector space; infinite dimension; finite dimension; lattice of subspaces; closed subspace; lattice of closed subspaces; modular lattice; orthomodular lattice; orthogonality; orthocomplement; splitting subspace; projection; orthomodular poset;
D O I
10.1142/S0219498820500413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the lattice of subspaces of a vector space over a field is modular. We investigate under which conditions this lattice is orthocomplemented with respect to the orthogonality operation. Using this operation, we define closed subspaces of a vector space and study the lattice of these subspaces. In particular, we investigate when this lattice is modular or orthocomplemented. Finally, we introduce splitting subspaces as special closed subspaces and we prove that the poset of splitting subspaces and the poset of projections are isomorphic orthomodular posets. The vector spaces under consideration are of arbitrary dimension and over arbitrary fields.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ORTHOGONALITY SPACES AND ATOMISTIC ORTHOCOMPLEMENTED LATTICES
    HEDLIKOVA, J
    PULMANNOVA, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (01) : 8 - 23
  • [2] VECTOR LATTICES WITH NO PROPER A-SUBSPACES
    ANDERSON, M
    BIXLER, P
    CONRAD, P
    ARCHIV DER MATHEMATIK, 1983, 41 (05) : 427 - 433
  • [3] ORTHOGONALITY AND COMPLEMENTATION IN THE LATTICE OF SUBSPACES OF A FINITE VECTOR SPACE
    Chajda, Ivan
    Langer, Helmut
    MATHEMATICA BOHEMICA, 2022, 147 (02): : 141 - 153
  • [4] Subspaces of computable vector spaces
    Downey, Rodney G.
    Hirschfeldt, Denis R.
    Kach, Asher M.
    Lempp, Steffen
    Mileti, Joseph R.
    Montalban, Antonio
    JOURNAL OF ALGEBRA, 2007, 314 (02) : 888 - 894
  • [5] OPEN SET LATTICES OF SUBSPACES OF SPECTRUM SPACES
    Nai, Yuan Ting
    Zhao, Dongsheng
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 637 - 652
  • [6] Vector spaces with a union of independent subspaces
    Berarducci, Alessandro
    Mamino, Marcello
    Mennuni, Rosario
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (3-4) : 499 - 507
  • [7] Vector spaces as unions of proper subspaces
    Khare, Apoorva
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (09) : 1681 - 1686
  • [8] EMBEDDING SEMILATTICES OF SUBSPACES OF VECTOR SPACES
    Mate L. Juhasz
    Andras Pongracz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (01) : 122 - 129
  • [9] Vector spaces with a union of independent subspaces
    Alessandro Berarducci
    Marcello Mamino
    Rosario Mennuni
    Archive for Mathematical Logic, 2024, 63 : 499 - 507
  • [10] BARRELED SPACES AND DENSE VECTOR SUBSPACES
    ROBERTSON, WJ
    SAXON, SA
    ROBERTSON, AP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 383 - 388