Vector spaces with a union of independent subspaces

被引:0
|
作者
Berarducci, Alessandro [1 ]
Mamino, Marcello [1 ]
Mennuni, Rosario [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
关键词
Model theory; Vector spaces; Independent subspaces; Stable theories; SUBGROUPS;
D O I
10.1007/s00153-024-00906-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the theory of K-vector spaces with a predicate for the union X of an infinite family of independent subspaces. We show that if K is infinite then the theory is complete and admits quantifier elimination in the language of K-vector spaces with predicates for the n-fold sums of X with itself. If K is finite this is no longer true, but we still have that a natural completion is near-model-complete.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 50 条
  • [1] Vector spaces with a union of independent subspaces
    Alessandro Berarducci
    Marcello Mamino
    Rosario Mennuni
    Archive for Mathematical Logic, 2024, 63 : 499 - 507
  • [2] REPRESENTATION OF VECTOR-SPACES AS A FINITE UNION OF SUBSPACES
    LUH, J
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4): : 341 - 342
  • [3] Subspaces of computable vector spaces
    Downey, Rodney G.
    Hirschfeldt, Denis R.
    Kach, Asher M.
    Lempp, Steffen
    Mileti, Joseph R.
    Montalban, Antonio
    JOURNAL OF ALGEBRA, 2007, 314 (02) : 888 - 894
  • [4] Vector spaces as unions of proper subspaces
    Khare, Apoorva
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (09) : 1681 - 1686
  • [5] Lattices of subspaces of vector spaces with orthogonality
    Chajda, Ivan
    Langer, Helmut
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [6] EMBEDDING SEMILATTICES OF SUBSPACES OF VECTOR SPACES
    Mate L. Juhasz
    Andras Pongracz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (01) : 122 - 129
  • [7] BARRELED SPACES AND DENSE VECTOR SUBSPACES
    ROBERTSON, WJ
    SAXON, SA
    ROBERTSON, AP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 383 - 388
  • [8] On flags and fuzzy subspaces of vector spaces
    Lubczonok, G
    Murali, V
    FUZZY SETS AND SYSTEMS, 2002, 125 (02) : 201 - 207
  • [9] Partitions of finite vector spaces into subspaces
    El-Zanati, S. I.
    Seelinger, G. F.
    Sissokho, P. A.
    Spence, L. E.
    Eynden, C. Vanden
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (04) : 329 - 341
  • [10] On vector spaces with distinguished subspaces and redundant base
    Barioli, F
    De Vivo, C
    Metelli, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 374 : 107 - 126