Vector spaces as unions of proper subspaces

被引:18
|
作者
Khare, Apoorva [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
Vector space; Partition; Finite codimension; FROBENIUS NUMBER; PARTITIONS;
D O I
10.1016/j.laa.2009.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we find a sharp bound for the minimal number (or in general, indexing set) of subspaces of a fixed (finite) codimension needed to cover any vector space V over any field. If V is a finite set, this is related to the problem of partitioning V into subspaces. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1681 / 1686
页数:6
相关论文
共 50 条
  • [1] Topological vector spaces, compacta, and unions of subspaces
    Arhangel'skii, Alexander
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 616 - 622
  • [2] Infinite dimensional proper subspaces of computable vector spaces
    Conidis, Chris J.
    JOURNAL OF ALGEBRA, 2014, 406 : 346 - 375
  • [3] VECTOR LATTICES WITH NO PROPER A-SUBSPACES
    ANDERSON, M
    BIXLER, P
    CONRAD, P
    ARCHIV DER MATHEMATIK, 1983, 41 (05) : 427 - 433
  • [4] COMPACT SPACES REPRESENTABLE AS UNIONS OF NICE SUBSPACES
    ISMAIL, M
    SZYMANSKI, A
    TOPOLOGY AND ITS APPLICATIONS, 1994, 59 (03) : 287 - 298
  • [5] Subspaces of computable vector spaces
    Downey, Rodney G.
    Hirschfeldt, Denis R.
    Kach, Asher M.
    Lempp, Steffen
    Mileti, Joseph R.
    Montalban, Antonio
    JOURNAL OF ALGEBRA, 2007, 314 (02) : 888 - 894
  • [6] Vector spaces with a union of independent subspaces
    Berarducci, Alessandro
    Mamino, Marcello
    Mennuni, Rosario
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (3-4) : 499 - 507
  • [7] Lattices of subspaces of vector spaces with orthogonality
    Chajda, Ivan
    Langer, Helmut
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [8] EMBEDDING SEMILATTICES OF SUBSPACES OF VECTOR SPACES
    Mate L. Juhasz
    Andras Pongracz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (01) : 122 - 129
  • [9] Vector spaces with a union of independent subspaces
    Alessandro Berarducci
    Marcello Mamino
    Rosario Mennuni
    Archive for Mathematical Logic, 2024, 63 : 499 - 507
  • [10] BARRELED SPACES AND DENSE VECTOR SUBSPACES
    ROBERTSON, WJ
    SAXON, SA
    ROBERTSON, AP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 383 - 388