ON THE POLYNOMIAL CONVERGENCE RATE TO NONEQUILIBRIUM STEADY STATES

被引:2
|
作者
Li, Yao [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 06期
关键词
Microscopic heat conduction; polynomial convergence rate; Markov jump process; induced chain method; HEAT-CONDUCTION; ANHARMONIC CHAINS; PARTICLE-SYSTEMS; ENERGY-EXCHANGE; MARKOV-CHAINS; FOURIERS LAW; MODEL; DECAY; BILLIARDS; DRIVEN;
D O I
10.1214/18-AAP1406
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a stochastic energy exchange model that models the 1-D microscopic heat conduction in the nonequilibrium setting. In this paper, we prove the existence and uniqueness of the nonequilibrium steady state (NESS) and, furthermore, the polynomial speed of convergence to the NESS. Our result shows that the asymptotic properties of this model and its deterministic dynamical system origin are consistent. The proof uses a new technique called the induced chain method. We partition the state space and work on both the Markov chain induced by an "active set" and the tail of return time to this "active set."
引用
收藏
页码:3765 / 3812
页数:48
相关论文
共 50 条
  • [41] Variational quantum algorithm for nonequilibrium steady states
    Yoshioka, Nobuyuki
    Nakagawa, Yuya O.
    Mitarai, Kosuke
    Fujii, Keisuke
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [42] Nonequilibrium steady states in sheared binary fluids
    Stansell, P
    Stratford, K
    Desplat, JC
    Adhikari, R
    Cates, ME
    PHYSICAL REVIEW LETTERS, 2006, 96 (08) : 1 - 4
  • [43] Nonequilibrium steady states, ratchets, and kinetic asymmetry
    Astumian, R. Dean
    MATTER, 2023, 6 (08) : 2533 - 2536
  • [44] Fractality in nonequilibrium steady states of quasiperiodic systems
    Varma, Vipin Kerala
    de Mulatier, Clelia
    Znidaric, Marko
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [45] STEADY-STATES IN NONEQUILIBRIUM LATTICE SYSTEMS
    MARRO, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1993, 4 (02): : 357 - 364
  • [46] NONEQUILIBRIUM STEADY-STATES WITH SPATIAL PATTERNS
    HOHENBERG, PC
    PHYSICA SCRIPTA, 1985, T9 : 93 - 94
  • [47] Nonequilibrium steady states in Langevin thermal systems
    Lee, Hyun Keun
    Lahiri, Sourabh
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [48] Nonequilibrium steady states for a class of particle systems
    Li, Yao
    Young, Lai-Sang
    NONLINEARITY, 2014, 27 (03) : 607 - 636
  • [49] Electrochemical experiments on thermodynamics at nonequilibrium steady states
    Hjelmfelt, A., 1600, ACS, Washington, DC, United States (98):
  • [50] Nonequilibrium Steady States for Certain Hamiltonian Models
    Lin, Kevin K.
    Young, Lai-Sang
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (04) : 630 - 657