ON THE POLYNOMIAL CONVERGENCE RATE TO NONEQUILIBRIUM STEADY STATES

被引:2
|
作者
Li, Yao [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 06期
关键词
Microscopic heat conduction; polynomial convergence rate; Markov jump process; induced chain method; HEAT-CONDUCTION; ANHARMONIC CHAINS; PARTICLE-SYSTEMS; ENERGY-EXCHANGE; MARKOV-CHAINS; FOURIERS LAW; MODEL; DECAY; BILLIARDS; DRIVEN;
D O I
10.1214/18-AAP1406
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a stochastic energy exchange model that models the 1-D microscopic heat conduction in the nonequilibrium setting. In this paper, we prove the existence and uniqueness of the nonequilibrium steady state (NESS) and, furthermore, the polynomial speed of convergence to the NESS. Our result shows that the asymptotic properties of this model and its deterministic dynamical system origin are consistent. The proof uses a new technique called the induced chain method. We partition the state space and work on both the Markov chain induced by an "active set" and the tail of return time to this "active set."
引用
收藏
页码:3765 / 3812
页数:48
相关论文
共 50 条
  • [31] Nonequilibrium criticality at shock formation in steady states
    Mukherji, S
    Bhattacharjee, SM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (17): : L285 - L291
  • [32] THERMODYNAMICS OF STEADY STATES - ADDITIONAL NONEQUILIBRIUM EFFECTS
    TYKODI, RJ
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1977, 2 (04) : 193 - 204
  • [33] Quantum macrostatistical picture of nonequilibrium steady states
    Sewell, GL
    LETTERS IN MATHEMATICAL PHYSICS, 2004, 68 (01) : 53 - 65
  • [34] Temporal asymmetry of fluctuations in nonequilibrium steady states
    Paneni, C
    Searles, DJ
    Rondoni, L
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (11):
  • [36] Nonequilibrium steady states of driven periodic media
    Balents, L
    Marchetti, MC
    Radzihovsky, L
    PHYSICAL REVIEW B, 1998, 57 (13): : 7705 - 7739
  • [37] Universal Spatial Structure of Nonequilibrium Steady States
    Sonner, Julian
    Withers, Benjamin
    PHYSICAL REVIEW LETTERS, 2017, 119 (16)
  • [38] Thermodynamics of precision in quantum nonequilibrium steady states
    Guarnieri, Giacomo
    Landi, Gabriel T.
    Clark, Stephen R.
    Goold, John
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [39] Rules for transition rates in nonequilibrium steady states
    Evans, RML
    PHYSICAL REVIEW LETTERS, 2004, 92 (15) : 150601 - 1
  • [40] Nonequilibrium Steady States for Certain Hamiltonian Models
    Kevin K. Lin
    Lai-Sang Young
    Journal of Statistical Physics, 2010, 139 : 630 - 657