ON THE POLYNOMIAL CONVERGENCE RATE TO NONEQUILIBRIUM STEADY STATES

被引:2
|
作者
Li, Yao [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 06期
关键词
Microscopic heat conduction; polynomial convergence rate; Markov jump process; induced chain method; HEAT-CONDUCTION; ANHARMONIC CHAINS; PARTICLE-SYSTEMS; ENERGY-EXCHANGE; MARKOV-CHAINS; FOURIERS LAW; MODEL; DECAY; BILLIARDS; DRIVEN;
D O I
10.1214/18-AAP1406
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a stochastic energy exchange model that models the 1-D microscopic heat conduction in the nonequilibrium setting. In this paper, we prove the existence and uniqueness of the nonequilibrium steady state (NESS) and, furthermore, the polynomial speed of convergence to the NESS. Our result shows that the asymptotic properties of this model and its deterministic dynamical system origin are consistent. The proof uses a new technique called the induced chain method. We partition the state space and work on both the Markov chain induced by an "active set" and the tail of return time to this "active set."
引用
收藏
页码:3765 / 3812
页数:48
相关论文
共 50 条
  • [21] Thermodynamics and phase coexistence in nonequilibrium steady states
    Dickman, Ronald
    29TH WORKSHOP ON RECENT DEVELOPMENTS IN COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS, 2016, 750
  • [22] Novel nonequilibrium steady states in multiple emulsions
    Tiribocchi, A.
    Montessori, A.
    Aime, S.
    Milani, M.
    Lauricella, M.
    Succi, S.
    Weitz, D.
    PHYSICS OF FLUIDS, 2020, 32 (01)
  • [23] Principle of entropy maximization for nonequilibrium steady states
    Shapiro, AA
    Stenby, EH
    THERMAL NONEQUILIBRIUM PHENOMENA IN FLUID MIXTURES, 2002, 584 : 61 - 73
  • [24] Quantum macrostatistical theory of nonequilibrium steady states
    Sewell, GL
    REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (09) : 977 - 1020
  • [25] Nonequilibrium steady states in polar active fluids
    Tjhung, Elsen
    Cates, Michael E.
    Marenduzzo, Davide
    SOFT MATTER, 2011, 7 (16) : 7453 - 7464
  • [26] Nonequilibrium steady states in a model for prebiotic evolution
    Wynveen, A.
    Fedorov, I.
    Halley, J. W.
    PHYSICAL REVIEW E, 2014, 89 (02)
  • [27] On the possible distributions of temperature in nonequilibrium steady states
    Davis, Sergio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (04)
  • [28] Extending the definition of entropy to nonequilibrium steady states
    Ruelle, DP
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) : 3054 - 3058
  • [29] Expression for the stationary distribution in nonequilibrium steady states
    Komatsu, Teruhisa S.
    Nakagawa, Naoko
    PHYSICAL REVIEW LETTERS, 2008, 100 (03)
  • [30] Quantum Macrostatistical Picture of Nonequilibrium Steady States
    Geoffrey Sewell
    Letters in Mathematical Physics, 2004, 68 : 53 - 65