On the Kahler-Ricci flow on Fano manifolds

被引:0
|
作者
Guo, Bin [1 ]
Phong, Duong H. [2 ]
Sturm, Jacob [1 ]
机构
[1] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Kahler-Ricci flow; Fano manifolds; EINSTEIN METRICS; CURVATURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A short proof of the convergence of the Kahler-Ricci flow on Fano manifolds admitting a Kahler-Einstein metric or a Kahler-Ricci soliton is given, using a variety of recent techniques.
引用
收藏
页码:573 / 581
页数:9
相关论文
共 50 条
  • [21] Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 299 - 333
  • [22] The Kahler Ricci flow on Fano manifolds (I)
    Chen, Xiuxiong
    Wang, Bing
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (06) : 2001 - 2038
  • [23] On the Kahler-Ricci Flow on Projective Manifolds of General Type
    Gang TIAN Zhou ZHANG (Dedicated to the memory of Shiing-Shen Chern)
    ChineseAnnalsofMathematics, 2006, (02) : 179 - 192
  • [24] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [25] On the Kahler-Ricci flow on projective manifolds of general type
    Tian, G
    Zhang, Z
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 179 - 192
  • [26] PERELMAN'S ENTROPY AND KAHLER-RICCI FLOW ON A FANO MANIFOLD
    Tian, Gang
    Zhang, Shijin
    Zhang, Zhenlei
    Zhu, Xiaohua
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (12) : 6669 - 6695
  • [27] THE KAHLER-RICCI FLOW, HOLOMORPHIC VECTOR FIELDS AND FANO BUNDLES
    Shen, Xi Sisi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6751 - 6768
  • [28] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [29] Special Kahler-Ricci potentials on compact Kahler manifolds
    Derdzinski, A.
    Maschler, G.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 593 : 73 - 116
  • [30] Convergence of the Weak Kahler-Ricci Flow on Manifolds of General Type
    Tat Dat To
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 6373 - 6404