On the Kahler-Ricci flow on Fano manifolds

被引:0
|
作者
Guo, Bin [1 ]
Phong, Duong H. [2 ]
Sturm, Jacob [1 ]
机构
[1] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Kahler-Ricci flow; Fano manifolds; EINSTEIN METRICS; CURVATURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A short proof of the convergence of the Kahler-Ricci flow on Fano manifolds admitting a Kahler-Einstein metric or a Kahler-Ricci soliton is given, using a variety of recent techniques.
引用
收藏
页码:573 / 581
页数:9
相关论文
共 50 条
  • [31] KAHLER-RICCI FLOW ON PROJECTIVE BUNDLES OVER KAHLER-EINSTEIN MANIFOLDS
    Fong, Frederick Tsz-Ho
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (02) : 563 - 589
  • [32] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [33] Kahler Manifolds with Negative Holomorphic Sectional Curvature, Kahler-Ricci Flow Approach
    Nomura, Ryosuke
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (21) : 6611 - 6616
  • [34] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [35] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [36] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [37] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [38] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [39] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [40] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188