Nonlinear optomechanical paddle nanocavities

被引:34
|
作者
Kaviani, Hamidreza [1 ,2 ]
Healey, Chris [1 ,2 ]
Wu, Marcelo [1 ,2 ]
Ghobadi, Roohollah [3 ]
Hryciw, Aaron [1 ,4 ]
Barclay, Paul E. [1 ,2 ]
机构
[1] Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[2] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[3] TU Wien, Inst Atom & Subat Phys, A-1020 Vienna, Austria
[4] Univ Alberta, NanoFAB Facil, Edmonton, AB T6G 2R3, Canada
来源
OPTICA | 2015年 / 2卷 / 03期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 奥地利科学基金会;
关键词
CAVITY; CRYSTALS;
D O I
10.1364/OPTICA.2.000271
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear optomechanical coupling is the basis for many potential future experiments in quantum optomechanics (e.g., quantum nondemolition measurements, preparation of nonclassical states), which to date have been difficult to realize due to small nonlinearity in typical optomechanical devices. Here we introduce an optomechanical system combining strong nonlinear optomechanical coupling, low mass, and large optical mode spacing. This nanoscale "paddle nanocavity" supports mechanical resonances with hundreds of femtograms of mass that couple nonlinearly to optical modes with a quadratic optomechanical coupling coefficient g((2)) > 2 pi x 400 MHz/nm(2), and a single-photon to two-phonon optomechanical coupling rate of Delta omega(0) > 2 pi x 16 Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly nondegenerate. Nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T>50 mK, and measurement of phonon shot noise is achievable. This shows that strong nonlinear effects can be realized without relying on coupling between nearly degenerate optical modes, thus avoiding the parasitic linear coupling present in two-mode systems. (C) 2015 Optical Society of America
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [41] Optical bistability and entanglement in a nonlinear optomechanical system
    Guangdong Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou
    Guangdong
    510006, China
    不详
    Guangdong
    510006, China
    Guangxue Xuebao, 10
  • [42] Interactive optomechanical coupling with nonlinear polaritonic systems
    Bobrovska, N.
    Matuszewski, M.
    Liew, T. C. H.
    Kyriienko, O.
    PHYSICAL REVIEW B, 2017, 95 (08)
  • [43] Active optomechanical media for nonlinear microwave processes
    Rogovin, D.
    Shen, T.P.
    IEEE Microwave and Guided Wave Letters, 1991, 1 (12): : 388 - 390
  • [44] Quantum Nonlinear Optics in Optomechanical Nanoscale Waveguides
    Zoubi, Hashem
    Hammerer, Klemens
    PHYSICAL REVIEW LETTERS, 2017, 119 (12)
  • [45] TO PADDLE OR NOT TO PADDLE
    BRAUDIS, RE
    SCHOOL AND COMMUNITY, 1969, 55 (09): : 42 - &
  • [46] Phased-array sources based on nonlinear metamaterial nanocavities
    Omri Wolf
    Salvatore Campione
    Alexander Benz
    Arvind P. Ravikumar
    Sheng Liu
    Ting S. Luk
    Emil A. Kadlec
    Eric A. Shaner
    John F. Klem
    Michael B. Sinclair
    Igal Brener
    Nature Communications, 6
  • [47] Phased-array sources based on nonlinear metamaterial nanocavities
    Wolf, Omri
    Campione, Salvatore
    Benz, Alexander
    Ravikumar, Arvind P.
    Liu, Sheng
    Luk, Ting S.
    Kadlec, Emil A.
    Shaner, Eric A.
    Klem, John F.
    Sinclair, Michael B.
    Brener, Igal
    NATURE COMMUNICATIONS, 2015, 6
  • [48] Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion
    Rivoire, Kelley
    Buckley, Sonia
    Vuckovic, Jelena
    OPTICS EXPRESS, 2011, 19 (22): : 22198 - 22207
  • [49] Optomechanical "nonlinear" light modulation on nano-scales
    Shalin, Alexander S.
    Ginzburg, Pavel
    Belov, Pavel A.
    Kivshar, Yuri S.
    Zayats, Anatoly V.
    2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, : 346 - 348
  • [50] Nonlinear enhanced mass sensor based on optomechanical system
    满鑫鑫
    孙静
    张闻钊
    罗丽娟
    金光日
    Chinese Physics B, 2024, 33 (12) : 78 - 85