Nonlinear optomechanical paddle nanocavities

被引:34
|
作者
Kaviani, Hamidreza [1 ,2 ]
Healey, Chris [1 ,2 ]
Wu, Marcelo [1 ,2 ]
Ghobadi, Roohollah [3 ]
Hryciw, Aaron [1 ,4 ]
Barclay, Paul E. [1 ,2 ]
机构
[1] Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[2] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[3] TU Wien, Inst Atom & Subat Phys, A-1020 Vienna, Austria
[4] Univ Alberta, NanoFAB Facil, Edmonton, AB T6G 2R3, Canada
来源
OPTICA | 2015年 / 2卷 / 03期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 奥地利科学基金会;
关键词
CAVITY; CRYSTALS;
D O I
10.1364/OPTICA.2.000271
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear optomechanical coupling is the basis for many potential future experiments in quantum optomechanics (e.g., quantum nondemolition measurements, preparation of nonclassical states), which to date have been difficult to realize due to small nonlinearity in typical optomechanical devices. Here we introduce an optomechanical system combining strong nonlinear optomechanical coupling, low mass, and large optical mode spacing. This nanoscale "paddle nanocavity" supports mechanical resonances with hundreds of femtograms of mass that couple nonlinearly to optical modes with a quadratic optomechanical coupling coefficient g((2)) > 2 pi x 400 MHz/nm(2), and a single-photon to two-phonon optomechanical coupling rate of Delta omega(0) > 2 pi x 16 Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly nondegenerate. Nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T>50 mK, and measurement of phonon shot noise is achievable. This shows that strong nonlinear effects can be realized without relying on coupling between nearly degenerate optical modes, thus avoiding the parasitic linear coupling present in two-mode systems. (C) 2015 Optical Society of America
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [21] Polariton multistability in a nonlinear optomechanical cavity
    Bhatt, Vijay
    Yadav, Surabhi
    Jha, Pradip K.
    Bhattacherjee, Aranya B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (36)
  • [22] Discrete solitons in nonlinear optomechanical array
    Houwe, Alphonse
    Philippe, Djorwe
    Souleymanou, Abbagari
    Serge, Yamigno Doka
    Engo, S. G. Nana
    CHAOS SOLITONS & FRACTALS, 2022, 154
  • [23] Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves
    Tzy-Rong Lin
    Chiang-Hsin Lin
    Jin-Chen Hsu
    Scientific Reports, 5
  • [24] Optomechanical Sensing in the Nonlinear Saturation Limit
    Javid, Usman A.
    Rogers, Steven D.
    Graf, Austin
    Lin, Qiang
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [25] Nonlinear dynamics and chaos in an optomechanical beam
    Daniel Navarro-Urrios
    Néstor E. Capuj
    Martín F. Colombano
    P. David García
    Marianna Sledzinska
    Francesc Alzina
    Amadeu Griol
    Alejandro Martínez
    Clivia M. Sotomayor-Torres
    Nature Communications, 8
  • [26] Optomechanical response of a nonlinear mechanical resonator
    Shevchuk, Olga
    Singh, Vibhor
    Steele, Gary A.
    Blanter, Ya. M.
    PHYSICAL REVIEW B, 2015, 92 (19):
  • [27] Efficient Nonlinear Metasurface Based on Nonplanar Plasmonic Nanocavities
    Wang, Feng
    Martinson, Alex B. F.
    Harutyunyan, Hayk
    ACS PHOTONICS, 2017, 4 (05): : 1188 - 1194
  • [28] Simulation of an optomechanical quantum memory in the nonlinear regime
    Teh, R. Y.
    Kiesewetter, S.
    Reid, M. D.
    Drummond, P. D.
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [29] Cavity Optomechanical Sensing in the Nonlinear Saturation Limit
    Javid, Usman A.
    Rogers, Steven D.
    Graf, Austin
    Lin, Qiang
    LASER & PHOTONICS REVIEWS, 2021, 15 (09)
  • [30] Nano-optomechanical nonlinear dielectric metamaterials
    Karvounis, Artemios
    Ou, Jun-Yu
    Wu, Weiping
    MacDonald, Kevin F.
    Zheludev, Nikolay I.
    APPLIED PHYSICS LETTERS, 2015, 107 (19)