Nonlinear optomechanical paddle nanocavities

被引:34
|
作者
Kaviani, Hamidreza [1 ,2 ]
Healey, Chris [1 ,2 ]
Wu, Marcelo [1 ,2 ]
Ghobadi, Roohollah [3 ]
Hryciw, Aaron [1 ,4 ]
Barclay, Paul E. [1 ,2 ]
机构
[1] Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[2] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[3] TU Wien, Inst Atom & Subat Phys, A-1020 Vienna, Austria
[4] Univ Alberta, NanoFAB Facil, Edmonton, AB T6G 2R3, Canada
来源
OPTICA | 2015年 / 2卷 / 03期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 奥地利科学基金会;
关键词
CAVITY; CRYSTALS;
D O I
10.1364/OPTICA.2.000271
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear optomechanical coupling is the basis for many potential future experiments in quantum optomechanics (e.g., quantum nondemolition measurements, preparation of nonclassical states), which to date have been difficult to realize due to small nonlinearity in typical optomechanical devices. Here we introduce an optomechanical system combining strong nonlinear optomechanical coupling, low mass, and large optical mode spacing. This nanoscale "paddle nanocavity" supports mechanical resonances with hundreds of femtograms of mass that couple nonlinearly to optical modes with a quadratic optomechanical coupling coefficient g((2)) > 2 pi x 400 MHz/nm(2), and a single-photon to two-phonon optomechanical coupling rate of Delta omega(0) > 2 pi x 16 Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly nondegenerate. Nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T>50 mK, and measurement of phonon shot noise is achievable. This shows that strong nonlinear effects can be realized without relying on coupling between nearly degenerate optical modes, thus avoiding the parasitic linear coupling present in two-mode systems. (C) 2015 Optical Society of America
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [31] Mechanical oscillator thermometry in the nonlinear optomechanical regime
    Montenegro, V
    Genoni, M. G.
    Bayat, A.
    Paris, M. G. A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [32] Nonlinear localized wave modes in optomechanical array
    Houwe, Alphonse
    Djorwe, Philippe
    Souleymanou, Abbagari
    Nana Engo, Serge Guy
    Doka, Serge Yamigno
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [33] Nonlinear Dynamics and Quantum Entanglement in Optomechanical Systems
    Wang, Guanglei
    Huang, Liang
    Lai, Ying-Cheng
    Grebogi, Celso
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [34] Cooling and thermophonon transports in nonlinear optomechanical systems
    Wu, Yu
    Liao, Qinghong
    Chen, Aixi
    Nie, Wenjie
    RESULTS IN PHYSICS, 2021, 31
  • [35] Nonlinear Radiation Pressure Dynamics in an Optomechanical Crystal
    Krause, Alex G.
    Hill, Jeff T.
    Ludwig, Max
    Safavi-Naeini, Amir H.
    Chan, Jasper
    Marquardt, Florian
    Painter, Oskar
    PHYSICAL REVIEW LETTERS, 2015, 115 (23)
  • [36] Quantum nonlinear optics near optomechanical instabilities
    Xu, Xunnong
    Gullans, Michael
    Taylor, Jacob M.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [37] Electromagnetically induced grating in a nonlinear optomechanical cavity
    Chen, Fujun
    LASER PHYSICS LETTERS, 2023, 20 (09)
  • [38] Nonlinear optical mass sensor with an optomechanical microresonator
    Li, Jin-Jin
    Zhu, Ka-Di
    APPLIED PHYSICS LETTERS, 2012, 101 (14)
  • [39] Temporal rocking in a nonlinear hybrid optomechanical system
    Zhang, Xiaotian
    Sheng, Jiteng
    Wu, Haibin
    OPTICS EXPRESS, 2018, 26 (05): : 6285 - 6293
  • [40] Nonlinear dynamics of weakly dissipative optomechanical systems
    Roque, Thales Figueiredo
    Marquardt, Florian
    Yevtushenko, Oleg M.
    NEW JOURNAL OF PHYSICS, 2020, 22 (01):