Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

被引:0
|
作者
Fedele, R. [1 ]
Eliasson, B. [2 ]
Haas, E. [3 ]
Shukla, P. K. [2 ]
Jovanovic, D. [4 ]
De Nicola, S. [5 ]
机构
[1] Univ Federico II, Dipartimento Sci Fis, INFN, Complesso Univ MS Angelo,Via Cintia 1, I-80126 Naples, Italy
[2] Ruhr Univ, Inst Theoretische Phys IV, Fak Phys & Astronome, D-44780 Bochum, Germany
[3] Univ Vale Rio dos Sinos, Dept Engn Mech, Unisinos, BR-9302200 Sao Leopoldo, Brazil
[4] Inst Phys, Belgrade 11001, Serbia
[5] Inst Nazionale Ottica CNR, I-80078 Pozzuoli, Italy
来源
关键词
Bose Einstein condensates; nonlinear Schrodinger equation; Korteweg-de Vries equation; solitons; controlling potential method; BOSE-EINSTEIN CONDENSATE; MATTER-WAVE SOLITONS; NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; ATTRACTIVE INTERACTIONS; DARK SOLITONS; TRAPS; COLLAPSE; STABILITY; VORTICES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.
引用
收藏
页码:61 / +
页数:3
相关论文
共 50 条
  • [21] Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
    Fedele, R.
    Jovanovic, D.
    De Nicola, S.
    Eliasson, B.
    Shukla, P. K.
    NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS, 2009, 1188 : 356 - +
  • [22] Soliton lattices in the Gross-Pitaevskii equation with nonlocal and repulsive coupling
    Sakaguchi, Hidetsugu
    PHYSICS LETTERS A, 2019, 383 (11) : 1132 - 1137
  • [23] Topological and non-topological soliton solutions to the 1+3-dimensional Gross-Pitaevskii equation with quadratic potential term
    Kumar, H.
    Saravanan, P.
    SCIENTIA IRANICA, 2017, 24 (05) : 2429 - 2435
  • [24] GLOBAL SOLUTIONS FOR 3D NONLOCAL GROSS-PITAEVSKII EQUATIONS WITH ROUGH DATA
    Pecher, Hartmut
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [25] Analytical expressions for dark soliton solution of a Gross-Pitaevskii equation
    Ma, Manjun
    Dang, Chi
    Huang, Zhe
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 383 - 389
  • [26] Investigation of soliton solutions to the truncated M-fractional (3+1)-dimensional Gross-Pitaevskii equation with periodic potential
    Qawaqneh, Haitham
    Altalbe, Ali
    Bekir, Ahmet
    Tariq, Kalim U.
    AIMS MATHEMATICS, 2024, 9 (09): : 23410 - 23433
  • [27] Obstruction to the bilinear control of the Gross-Pitaevskii equation: an example with an unbounded potential
    Chambrion, Thomas
    Thomann, Laurent
    IFAC PAPERSONLINE, 2019, 52 (16): : 304 - 309
  • [28] Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
    Rybin, AV
    Varzugin, GG
    Lindberg, M
    Timonen, J
    Bullough, RK
    PHYSICAL REVIEW E, 2000, 62 (05): : 6224 - 6228
  • [29] Dynamic study for numerical solutions of the Gross-Pitaevskii equation
    Department of Science, Liaoning Technical University, Fuxin 123000, China
    不详
    Jisuan Wuli, 2006, 4 (483-488):
  • [30] The multisymplectic numerical method for Gross-Pitaevskii equation
    Tian, YiMin
    Qin, MengZhao
    Zhang, YongMing
    Ma, Tao
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (06) : 449 - 458