Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

被引:0
|
作者
Fedele, R. [1 ]
Eliasson, B. [2 ]
Haas, E. [3 ]
Shukla, P. K. [2 ]
Jovanovic, D. [4 ]
De Nicola, S. [5 ]
机构
[1] Univ Federico II, Dipartimento Sci Fis, INFN, Complesso Univ MS Angelo,Via Cintia 1, I-80126 Naples, Italy
[2] Ruhr Univ, Inst Theoretische Phys IV, Fak Phys & Astronome, D-44780 Bochum, Germany
[3] Univ Vale Rio dos Sinos, Dept Engn Mech, Unisinos, BR-9302200 Sao Leopoldo, Brazil
[4] Inst Phys, Belgrade 11001, Serbia
[5] Inst Nazionale Ottica CNR, I-80078 Pozzuoli, Italy
来源
NEW FRONTIERS IN ADVANCED PLASMA PHYSICS | 2010年 / 1306卷
关键词
Bose Einstein condensates; nonlinear Schrodinger equation; Korteweg-de Vries equation; solitons; controlling potential method; BOSE-EINSTEIN CONDENSATE; MATTER-WAVE SOLITONS; NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; ATTRACTIVE INTERACTIONS; DARK SOLITONS; TRAPS; COLLAPSE; STABILITY; VORTICES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.
引用
收藏
页码:61 / +
页数:3
相关论文
共 50 条
  • [41] GROSS-PITAEVSKII EQUATION FOR A BOSON SYSTEM WITH A REALISTIC POTENTIAL
    KOBE, DH
    HARPER, JH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 518 - &
  • [42] Soliton Solutions and Collisions for the Multicomponent Gross-Pitaevskii Equation in Spinor Bose-Einstein Condensates
    Wang, Ming
    He, Guo-Liang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [43] Logarithmic Gross-Pitaevskii equation
    Carles, Remi
    Ferriere, Guillaume
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (1-2) : 88 - 120
  • [44] Quantum Gross-Pitaevskii Equation
    Haegeman, Jutho
    Draxler, Damian
    Stojevic, Vid
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Verstraete, Frank
    SCIPOST PHYSICS, 2017, 3 (01):
  • [45] Invariant Manifolds of Traveling Waves of the 3D Gross-Pitaevskii Equation in the Energy Space
    Jin, Jiayin
    Lin, Zhiwu
    Zeng, Chongchun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (03) : 981 - 1039
  • [46] Derivation of the 2d Gross-Pitaevskii Equation for Strongly Confined 3d Bosons
    Bossmann, Lea
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (02) : 541 - 606
  • [47] The vector soliton of the (3+1)-dimensional Gross-Pitaevskii equation with variable coefficients
    Wang, Xin
    Zhang, Ling-Ling
    NONLINEAR DYNAMICS, 2023, 111 (06) : 5693 - 5708
  • [48] Vortex soliton solutions of a (3+1)-dimensional Gross-Pitaevskii equation with partially nonlocal distributed coefficients under a linear potential
    Wu, Hong-Yu
    Jiang, Li-Hong
    NONLINEAR DYNAMICS, 2020, 101 (04) : 2441 - 2448
  • [49] Comparative analysis of numerical with optical soliton solutions of stochastic Gross-Pitaevskii equation in dispersive media
    Baber, Muhammad Zafarullah
    Ahmed, Nauman
    Yasin, Muhammad Waqas
    Iqbal, Muhammad Sajid
    Akgul, Ali
    Riaz, Muhammad Bilal
    Rafiq, Muhammad
    Raza, Ali
    RESULTS IN PHYSICS, 2023, 44
  • [50] A spectral-Galerkin continuation method for numerical solutions of the Gross-Pitaevskii equation
    Chang, S. -L.
    Chen, H. -S.
    Jeng, B. -W.
    Chien, C. -S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 254 : 2 - 16