GLOBAL SOLUTIONS FOR 3D NONLOCAL GROSS-PITAEVSKII EQUATIONS WITH ROUGH DATA

被引:0
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Naturwissensch, D-42097 Wuppertal, Germany
关键词
Gross-Pitaevskii equation; global well-posedness; Fourier restriction norm method; NONLINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; BOSE CONDENSATE; MOTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Gross-Pitaevskii equation with a nonlocal interaction potential of Hartree type in three space dimensions. If the potential is even and positive definite or a positive function and its Fourier transform decays sufficiently rapidly the problem is shown to be globally well-posed for large rough data which not necessarily have finite energy and also in a situation where the energy functional is not positive definite. The proof uses a suitable modification of the I-method.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] On nonlocal Gross-Pitaevskii equations with periodic potentials
    Curtis, Christopher W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [2] On the uniqueness of solutions to the periodic 3D Gross-Pitaevskii hierarchy
    Gressman, Philip
    Sohinger, Vedran
    Staffilani, Gigliola
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) : 4705 - 4764
  • [3] Uniqueness of solutions to the 3D quintic Gross-Pitaevskii hierarchy
    Hong, Younghun
    Tahaferro, Kenneth
    Xie, Zhihui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (01) : 34 - 67
  • [4] Scattering for the 3D Gross-Pitaevskii Equation
    Guo, Zihua
    Hani, Zaher
    Nakanishi, Kenji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (01) : 265 - 295
  • [5] Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method
    Fedele, R.
    Eliasson, B.
    Haas, E.
    Shukla, P. K.
    Jovanovic, D.
    De Nicola, S.
    NEW FRONTIERS IN ADVANCED PLASMA PHYSICS, 2010, 1306 : 61 - +
  • [6] Vortices in nonlocal Gross-Pitaevskii equation
    Shchesnovich, VS
    Kraenkel, RA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6633 - 6651
  • [7] A fast method for solving Kohn-Sham and Gross-Pitaevskii equations in 3D
    Krotscheck, E
    Auer, J
    Chin, SA
    CONDENSED MATTER THEORIES, VOL 17, 2003, 17 : 193 - 205
  • [8] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation
    Masaki, Satoshi
    Miyazaki, Hayato
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) : 743 - 761
  • [9] Mathematical and physical aspects of controlling the exact solutions of the 3D Gross-Pitaevskii equation
    Fedele, Renato
    Jovanovic, Dusan
    De Nicola, Sergio
    Eliasson, Bengt
    Shukla, Padma K.
    PHYSICS LETTERS A, 2010, 374 (05) : 788 - 795
  • [10] Unconditional global well-posedness for the 3D Gross-Pitaevskii equation for data without finite energy
    Pecher, Hartmut
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (06): : 1851 - 1877