GLOBAL SOLUTIONS FOR 3D NONLOCAL GROSS-PITAEVSKII EQUATIONS WITH ROUGH DATA

被引:0
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Naturwissensch, D-42097 Wuppertal, Germany
关键词
Gross-Pitaevskii equation; global well-posedness; Fourier restriction norm method; NONLINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; BOSE CONDENSATE; MOTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Gross-Pitaevskii equation with a nonlocal interaction potential of Hartree type in three space dimensions. If the potential is even and positive definite or a positive function and its Fourier transform decays sufficiently rapidly the problem is shown to be globally well-posed for large rough data which not necessarily have finite energy and also in a situation where the energy functional is not positive definite. The proof uses a suitable modification of the I-method.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] OPTIMAL BILINEAR CONTROL OF GROSS-PITAEVSKII EQUATIONS
    Hintermueller, Michael
    Marahrens, Daniel
    Markowich, Peter A.
    Sparber, Christof
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) : 2509 - 2543
  • [32] Modulated solutions and superfluid fraction for the Gross-Pitaevskii equation with a nonlocal potential at T ≠ 0
    Sepulveda, Nestor
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [33] Solutions of the Gross-Pitaevskii equation in two dimensions
    Lee, MD
    Morgan, SA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (13) : 3009 - 3017
  • [34] Domain Walls in the Coupled Gross-Pitaevskii Equations
    Alama, Stan
    Bronsard, Lia
    Contreras, Andres
    Pelinovsky, Dmitry E.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 579 - 610
  • [35] Formal analytical solutions for the Gross-Pitaevskii equation
    Trallero-Giner, C.
    Drake-Perez, Julio C.
    Lopez-Richard, V.
    Birman, Joseph L.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) : 2342 - 2352
  • [36] Cauchy matrix structure and solutions of the spin-1 Gross-Pitaevskii equations
    Li, Shangshuai
    Zhang, Da-jun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 129
  • [37] Existence and decay of traveling waves for the nonlocal Gross-Pitaevskii equation
    de Laire, Andre
    Lopez-Martinez, Salvador
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (09) : 1732 - 1794
  • [38] Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations
    PerezGarcia, VM
    Michinel, H
    Cirac, JI
    Lewenstein, M
    Zoller, P
    PHYSICAL REVIEW A, 1997, 56 (02): : 1424 - 1432
  • [39] Soliton lattices in the Gross-Pitaevskii equation with nonlocal and repulsive coupling
    Sakaguchi, Hidetsugu
    PHYSICS LETTERS A, 2019, 383 (11) : 1132 - 1137
  • [40] The Gross-Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve
    Shapovalov, Alexander V.
    Kulagin, Anton E.
    Trifonov, Andrey Yu.
    SYMMETRY-BASEL, 2020, 12 (02):