Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

被引:0
|
作者
Fedele, R. [1 ]
Eliasson, B. [2 ]
Haas, E. [3 ]
Shukla, P. K. [2 ]
Jovanovic, D. [4 ]
De Nicola, S. [5 ]
机构
[1] Univ Federico II, Dipartimento Sci Fis, INFN, Complesso Univ MS Angelo,Via Cintia 1, I-80126 Naples, Italy
[2] Ruhr Univ, Inst Theoretische Phys IV, Fak Phys & Astronome, D-44780 Bochum, Germany
[3] Univ Vale Rio dos Sinos, Dept Engn Mech, Unisinos, BR-9302200 Sao Leopoldo, Brazil
[4] Inst Phys, Belgrade 11001, Serbia
[5] Inst Nazionale Ottica CNR, I-80078 Pozzuoli, Italy
来源
关键词
Bose Einstein condensates; nonlinear Schrodinger equation; Korteweg-de Vries equation; solitons; controlling potential method; BOSE-EINSTEIN CONDENSATE; MATTER-WAVE SOLITONS; NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; ATTRACTIVE INTERACTIONS; DARK SOLITONS; TRAPS; COLLAPSE; STABILITY; VORTICES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.
引用
收藏
页码:61 / +
页数:3
相关论文
共 50 条
  • [1] Scattering for the 3D Gross-Pitaevskii Equation
    Guo, Zihua
    Hani, Zaher
    Nakanishi, Kenji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (01) : 265 - 295
  • [2] Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method
    Wang, Ying
    Zhou, Yu
    AIP ADVANCES, 2014, 4 (06):
  • [3] Bright soliton solution of a Gross-Pitaevskii equation
    Ma, Manjun
    Huang, Zhe
    APPLIED MATHEMATICS LETTERS, 2013, 26 (07) : 718 - 724
  • [4] Mathematical and physical aspects of controlling the exact solutions of the 3D Gross-Pitaevskii equation
    Fedele, Renato
    Jovanovic, Dusan
    De Nicola, Sergio
    Eliasson, Bengt
    Shukla, Padma K.
    PHYSICS LETTERS A, 2010, 374 (05) : 788 - 795
  • [5] Search for Soliton Solutions in the Three-Dimensional Gross-Pitaevskii Equation
    Laponin V.S.
    Computational Mathematics and Modeling, 2014, 25 (3) : 306 - 314
  • [6] Exact soliton-like solutions of the radial Gross-Pitaevskii equation
    Toikka, L. A.
    Hietarinta, J.
    Suominen, K-A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (48)
  • [7] On the uniqueness of solutions to the periodic 3D Gross-Pitaevskii hierarchy
    Gressman, Philip
    Sohinger, Vedran
    Staffilani, Gigliola
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) : 4705 - 4764
  • [8] Uniqueness of solutions to the 3D quintic Gross-Pitaevskii hierarchy
    Hong, Younghun
    Tahaferro, Kenneth
    Xie, Zhihui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (01) : 34 - 67
  • [9] Stability of the solutions of the Gross-Pitaevskii equation
    Jackson, AD
    Kavoulakis, GM
    Lundh, E
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [10] GENERALIZED SOLUTIONS TO THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1487 - 1498