Unsupervised 3D Object Retrieval with Parameter-Free Hierarchical Clustering

被引:0
|
作者
Getto, Roman [1 ]
Kuijper, Arjan [1 ,2 ]
Fellner, Dieter W. [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Fraunhoferstr 5, D-64283 Darmstadt, Germany
[2] Fraunhofer IGD, Fraunhoferstr 5, D-64283 Darmstadt, Germany
关键词
3D Object Retrieval; Hierarchical Clustering; Classification; SHAPE BENCHMARK;
D O I
10.1145/3095140.3095147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In 3D object retrieval, additional knowledge like user input, classification information or database dependent configured parameters are rarely available in real scenarios. For example, meta data about 3D objects is seldom if the objects are not within a well-known evaluation database. We propose an algorithm which improves the performance of unsupervised 3D object retrieval without using any additional knowledge. For the computation of the distances in our system any descriptor can be chosen; we use the Panorama-descriptor. Our algorithm uses a precomputed parameter-free agglomerative hierarchical clustering and combines the information of the hierarchy of clusters with the individual distances to improve a single object query. Additionally, we propose an adaption algorithm for the cases that new objects are added frequently to the database. We evaluate our approach with 6 databases including a total of 13271 objects in 481 classes. We show that our algorithm improves the average precision in an unsupervised scenario without any parameter configuration.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Indexing and retrieval of 3D models by unsupervised clustering with hierarchical SOM
    Wong, HS
    Cheung, KKT
    Sha, Y
    Ip, HHS
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 613 - 616
  • [2] Unsupervised 3D Object Retrieval in Loop View
    Kuang Z.
    Yang J.
    Yu J.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (05): : 765 - 771
  • [3] The X-Alter Algorithm: A Parameter-Free Method of Unsupervised Clustering
    Laloe, Thomas
    Servien, Remi
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2013, 12 (01) : 90 - 102
  • [4] PARAMETER-FREE CLUSTERING MODEL
    GITMAN, I
    PATTERN RECOGNITION, 1972, 4 (03) : 307 - &
  • [5] Parameter-free Hierarchical Image Segmentation
    Abdullah, S. M.
    Tischer, Peter
    Wijewickrema, Sudanthi
    Paplinski, Andrew
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [6] PaFSe: A Parameter-Free Segmentation Approach for 3D Fluorescent Images
    Ameli C.
    Fixemer S.
    Bouvier D.S.
    Skupin A.
    SN Computer Science, 3 (6)
  • [7] Hierarchical, Parameter-Free Community Discovery
    Papadimitriou, Spiros
    Sun, Jimeng
    Faloutsos, Christos
    Yu, Philip S.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 170 - +
  • [8] Parameter-Free Hierarchical Co-clustering by n-Ary Splits
    Ienco, Dino
    Pensa, Ruggero G.
    Meo, Rosa
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 580 - 595
  • [9] A parameter-free affinity based clustering
    Mukhoty, Bhaskar
    Gupta, Ruchir
    Lakshmanan, K.
    Kumar, Mayank
    APPLIED INTELLIGENCE, 2020, 50 (12) : 4543 - 4556
  • [10] Semi-supervised Parameter-Free Divisive Hierarchical Clustering of Categorical Data
    Xiong, Tengke
    Wang, Shengrui
    Mayers, Andre
    Monga, Ernest
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 265 - 276