Semi-supervised Parameter-Free Divisive Hierarchical Clustering of Categorical Data

被引:0
|
作者
Xiong, Tengke [1 ]
Wang, Shengrui [1 ]
Mayers, Andre [1 ]
Monga, Ernest [2 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering can yield considerable improvement over unsupervised clustering. Most existing semi-supervised clustering algorithms are non-hierarchical, derived from the k-means algorithm and designed for analyzing numeric data. Clustering categorical data is a challenging issue due to the lack of inherently meaningful similarity measure, and semi-supervised clustering in the categorical domain remains untouched. In this paper, we propose a novel semi-supervised divisive hierarchical algorithm for categorical data. Our algorithm is parameter-free, fully automatic and effective in taking advantage of instance-level constraint background knowledge to improve the quality of the resultant dendrogram. Experiments on real-life data demonstrate the promising performance of our algorithm.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 50 条
  • [1] DHCC: Divisive hierarchical clustering of categorical data
    Xiong, Tengke
    Wang, Shengrui
    Mayers, Andre
    Monga, Ernest
    DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 24 (01) : 103 - 135
  • [2] DHCC: Divisive hierarchical clustering of categorical data
    Tengke Xiong
    Shengrui Wang
    André Mayers
    Ernest Monga
    Data Mining and Knowledge Discovery, 2012, 24 : 103 - 135
  • [3] Gene Classification Using Parameter-Free Semi-Supervised Manifold Learning
    Huang, Hong
    Feng, Hailiang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 818 - 827
  • [4] Semi-supervised hierarchical clustering algorithms
    Amar, A
    Labzour, NT
    Bensaid, A
    SIXTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1997, 40 : 232 - 239
  • [5] Semi-supervised map regionalization for categorical data
    Beauchemin, Mario
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (24) : 9401 - 9411
  • [6] On the effects of constraints in semi-supervised hierarchical clustering
    Kestler, Hans A.
    Kraus, Johann M.
    Palm, Guenther
    Schwenker, Friedhelm
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 57 - 66
  • [8] Data mining for text categorization with semi-supervised agglomerative hierarchical clustering
    Skarmeta, AG
    Bensaid, A
    Tazi, N
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2000, 15 (07) : 633 - 646
  • [9] Survival Hierarchical Agglomerative Clustering: A Semi-Supervised Clustering Method Incorporating Survival Data
    Lacki, Alexander
    Martinez-Millana, Antonio
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 3 - 12
  • [10] Semi-supervised clustering for complicated data
    Huang, Tian-Qiang
    Yu, Yang-Qiang
    Qin, Xiao-Lin
    Kongzhi yu Juece/Control and Decision, 2010, 25 (01): : 14 - 19