Semi-supervised Parameter-Free Divisive Hierarchical Clustering of Categorical Data

被引:0
|
作者
Xiong, Tengke [1 ]
Wang, Shengrui [1 ]
Mayers, Andre [1 ]
Monga, Ernest [2 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering can yield considerable improvement over unsupervised clustering. Most existing semi-supervised clustering algorithms are non-hierarchical, derived from the k-means algorithm and designed for analyzing numeric data. Clustering categorical data is a challenging issue due to the lack of inherently meaningful similarity measure, and semi-supervised clustering in the categorical domain remains untouched. In this paper, we propose a novel semi-supervised divisive hierarchical algorithm for categorical data. Our algorithm is parameter-free, fully automatic and effective in taking advantage of instance-level constraint background knowledge to improve the quality of the resultant dendrogram. Experiments on real-life data demonstrate the promising performance of our algorithm.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 50 条
  • [31] SEMI-SUPERVISED SPECTRAL CLUSTERING
    Mai, Xiaoyi
    Couillet, Romain
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2012 - 2016
  • [32] A semi-supervised hierarchical approach: two-dimensional clustering of microarray gene expression data
    R. Priscilla
    S. Swamynathan
    Frontiers of Computer Science, 2013, 7 : 204 - 213
  • [33] A review on semi-supervised clustering
    Cai, Jianghui
    Hao, Jing
    Yang, Haifeng
    Zhao, Xujun
    Yang, Yuqing
    INFORMATION SCIENCES, 2023, 632 : 164 - 200
  • [34] Incremental Semi-Supervised Clustering Ensemble for High Dimensional Data Clustering
    Yu, Zhiwen
    Luo, Peinan
    You, Jane
    Wong, Hau-San
    Leung, Hareton
    Wu, Si
    Zhang, Jun
    Han, Guoqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (03) : 701 - 714
  • [35] Incremental Semi-supervised Clustering Ensemble for High Dimensional Data Clustering
    Yu, Zhiwen
    Luo, Peinan
    Wu, Si
    Han, Guoqiang
    You, Jane
    Leung, Hareton
    Wong, Hau-San
    Zhang, Jun
    2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1484 - 1485
  • [36] Semi-supervised adaptive-height snipping of the hierarchical clustering tree
    Obulkasim, Askar
    Meijer, Gerrit A.
    van de Wiel, Mark A.
    BMC BIOINFORMATICS, 2015, 16
  • [37] Semi-supervised adaptive-height snipping of the hierarchical clustering tree
    Askar Obulkasim
    Gerrit A Meijer
    Mark A van de Wiel
    BMC Bioinformatics, 16
  • [38] A semi-supervised framework for concept-based hierarchical document clustering
    Seyed Mojtaba Sadjadi
    Hoda Mashayekhi
    Hamid Hassanpour
    World Wide Web, 2023, 26 : 3861 - 3890
  • [39] A semi-supervised framework for concept-based hierarchical document clustering
    Sadjadi, Seyed Mojtaba
    Mashayekhi, Hoda
    Hassanpour, Hamid
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (06): : 3861 - 3890
  • [40] HCsnip: An R Package for Semi-supervised Snipping of the Hierarchical Clustering Tree
    Obulkasim, Askar
    van de Wiel, Mark A.
    CANCER INFORMATICS, 2015, 14 : 1 - 19