Unsupervised 3D Object Retrieval with Parameter-Free Hierarchical Clustering

被引:0
|
作者
Getto, Roman [1 ]
Kuijper, Arjan [1 ,2 ]
Fellner, Dieter W. [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Fraunhoferstr 5, D-64283 Darmstadt, Germany
[2] Fraunhofer IGD, Fraunhoferstr 5, D-64283 Darmstadt, Germany
关键词
3D Object Retrieval; Hierarchical Clustering; Classification; SHAPE BENCHMARK;
D O I
10.1145/3095140.3095147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In 3D object retrieval, additional knowledge like user input, classification information or database dependent configured parameters are rarely available in real scenarios. For example, meta data about 3D objects is seldom if the objects are not within a well-known evaluation database. We propose an algorithm which improves the performance of unsupervised 3D object retrieval without using any additional knowledge. For the computation of the distances in our system any descriptor can be chosen; we use the Panorama-descriptor. Our algorithm uses a precomputed parameter-free agglomerative hierarchical clustering and combines the information of the hierarchy of clusters with the individual distances to improve a single object query. Additionally, we propose an adaption algorithm for the cases that new objects are added frequently to the database. We evaluate our approach with 6 databases including a total of 13271 objects in 481 classes. We show that our algorithm improves the average precision in an unsupervised scenario without any parameter configuration.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Hierarchical multi-view context modelling for 3D object classification and retrieval
    Liu, An-An
    Zhou, Heyu
    Nie, Weizhi
    Liu, Zhenguang
    Liu, Wu
    Xie, Hongtao
    Mao, Zhendong
    Li, Xuanya
    Song, Dan
    INFORMATION SCIENCES, 2021, 547 : 984 - 995
  • [42] Multi-View Hierarchical Fusion Network for 3D Object Retrieval and Classification
    Liu, An-An
    Hu, Nian
    Song, Dan
    Guo, Fu-Bin
    Zhou, He-Yu
    Hao, Tong
    IEEE ACCESS, 2019, 7 : 153021 - 153030
  • [43] Parameter-Free Outlier Removal of 3D Point Clouds with Large-Scale Noises
    Zhang, Bibo
    Xiang, Bin
    Zhang, Lin
    2017 17TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2017,
  • [44] Multi-View Token Clustering and Fusion for 3D Object Recognition and Retrieval
    Fan, Linlong
    Ge, Yanqi
    Li, Wen
    Duan, Lixin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1145 - 1150
  • [45] A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms
    Ali, Rubbiya A.
    Landsberg, Michael J.
    Knauth, Emily
    Morgan, Garry P.
    Marsh, Brad J.
    Hankamer, Ben
    PLOS ONE, 2012, 7 (03):
  • [46] Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements
    Wladimir Peckar
    Christoph Schnörr
    Karl Rohr
    H. Siegfried Stiehl
    Journal of Mathematical Imaging and Vision, 1999, 10 : 143 - 162
  • [47] Parameter-free elastic deformation approach for 2D and 3D registration using prescribed displacements
    Peckar, W
    Schnörr, C
    Rohr, K
    Stiehl, HS
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1999, 10 (02) : 143 - 162
  • [48] 3D object retrieval by bipartite matching
    Pan, X
    Zhang, Y
    Ye, XZ
    Zhang, SY
    DIGITAL LIBRARIES: INTERNATIONAL COLLABORATION AND CROSS-FERTILIZATION, PROCEEDINGS, 2004, 3334 : 640 - 640
  • [49] Semantic Enabled 3D Object Retrieval
    Zhou, Jiang
    Ma, Xinyu
    MICRO NANO DEVICES, STRUCTURE AND COMPUTING SYSTEMS, 2011, 159 : 128 - 131
  • [50] An Unsupervised Hierarchical Clustering Approach to Improve Hopfield Retrieval Accuracy
    Lai, Matthew
    Cao, Longbing
    Lu, Haiyan
    Ha, Quang
    Li, Li
    Hossain, Jahangir
    Kennedy, Paul
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,