Unsupervised 3D Object Retrieval with Parameter-Free Hierarchical Clustering

被引:0
|
作者
Getto, Roman [1 ]
Kuijper, Arjan [1 ,2 ]
Fellner, Dieter W. [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Fraunhoferstr 5, D-64283 Darmstadt, Germany
[2] Fraunhofer IGD, Fraunhoferstr 5, D-64283 Darmstadt, Germany
关键词
3D Object Retrieval; Hierarchical Clustering; Classification; SHAPE BENCHMARK;
D O I
10.1145/3095140.3095147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In 3D object retrieval, additional knowledge like user input, classification information or database dependent configured parameters are rarely available in real scenarios. For example, meta data about 3D objects is seldom if the objects are not within a well-known evaluation database. We propose an algorithm which improves the performance of unsupervised 3D object retrieval without using any additional knowledge. For the computation of the distances in our system any descriptor can be chosen; we use the Panorama-descriptor. Our algorithm uses a precomputed parameter-free agglomerative hierarchical clustering and combines the information of the hierarchy of clusters with the individual distances to improve a single object query. Additionally, we propose an adaption algorithm for the cases that new objects are added frequently to the database. We evaluate our approach with 6 databases including a total of 13271 objects in 481 classes. We show that our algorithm improves the average precision in an unsupervised scenario without any parameter configuration.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Parameter-Free Density Estimation for Hyperspectral Image Clustering
    Le Moan, Steven
    Cariou, Claude
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2018,
  • [32] Monocular 3D Object Detection: An Extrinsic Parameter Free Approach
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7552 - 7562
  • [33] MonoEF: Extrinsic Parameter Free Monocular 3D Object Detection
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10114 - 10128
  • [34] PFClust: an optimised implementation of a parameter-free clustering algorithm
    Musayeva, Khadija
    Henderson, Tristan
    Mitchell, John Bo
    Mavridis, Lazaros
    SOURCE CODE FOR BIOLOGY AND MEDICINE, 2014, 9 (01):
  • [35] A parameter-free graph reduction for spectral clustering and SpectralNet
    Alshammari, Mashaan
    Stavrakakis, John
    Takatsuka, Masahiro
    ARRAY, 2022, 15
  • [36] AN UNSUPERVISED PARAMETER-FREE NUCLEI SEGMENTATION METHOD FOR HISTOLOGY IMAGES
    Magoulianitis, Vasileios
    Han, Peida
    Yang, Yijing
    Kuo, C.-C. Jay
    Proceedings - International Conference on Image Processing, ICIP, 2022, : 226 - 230
  • [37] AN UNSUPERVISED PARAMETER-FREE NUCLEI SEGMENTATION METHOD FOR HISTOLOGY IMAGES
    Magoulianitis, Vasileios
    Han, Peida
    Yang, Yijing
    Kuo, C. -C. Jay
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 226 - 230
  • [38] Parameter-Free Robust Ensemble Framework of Fuzzy Clustering
    Shi, Zhaoyin
    Chen, Long
    Ding, Weiping
    Zhang, Chuanbin
    Wang, Yingxu
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (12) : 4205 - 4219
  • [39] DSets-DBSCAN: A Parameter-Free Clustering Algorithm
    Hou, Jian
    Gao, Huijun
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3182 - 3193
  • [40] Parameter-free ensemble clustering with dynamic weighting mechanism
    Xie, Fangyuan
    Nie, Feiping
    Yu, Weizhong
    Li, Xuelong
    PATTERN RECOGNITION, 2024, 151