An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel

被引:6
|
作者
Dalai, Marco [1 ]
Guruswami, Venkatesan [2 ]
Radhakrishnan, Jaikumar [3 ]
机构
[1] Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy
[2] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
[3] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Mumbai 400005, Maharashtra, India
关键词
Upper bound; Decoding; Channel capacity; Bipartite graph; TV; Size measurement; 3G mobile communication; Perfect hashing; zero-error capacity; list decoding;
D O I
10.1109/TIT.2019.2933424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a new upper bound on the size of codes $C \subseteq \{1,2,3,4\}<^>{n}$ with the property that every four distinct codewords in $C$ have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most $2<^>{6n/19 + o(n)}$ , that is, rate bounded asymptotically by 6/19 <= 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Koml & x00F3;s, 1984) and (K & x00F6;rner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.
引用
收藏
页码:749 / 756
页数:8
相关论文
共 50 条
  • [41] Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations
    Cubitt, Toby S.
    Leung, Debbie
    Matthews, William
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5509 - 5523
  • [42] List-Decoding for the Arbitrarily Varying Channel Under State Constraints
    Sarwate, Anand D.
    Gastpar, Michael
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) : 1372 - 1384
  • [43] Zero-Error Capacity Regions of Noisy Networks
    Cao, Qi
    Yeung, Raymond W.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4201 - 4223
  • [44] Zero-error channel capacity of quantum 5-symbol obfuscation model
    Yu, Wenbin
    Xiong, Zijia
    Liu, Yang
    Rong, Shanshan
    Wang, Siyao
    Xu, Yinsong
    Liu, Alex X.
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2020, 13 (04) : 372 - 379
  • [45] Computability of the Zero-Error Capacity of Noisy Channels
    Boche, Holger
    Deppe, Christian
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [46] Zero-Error Capacity of Binary Channels With Memory
    Cohen, Gerard
    Fachini, Emanuela
    Koerner, Janos
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 3 - 7
  • [47] Zero-Error Capacity of a Class of Timing Channels
    Kovacevic, Mladen
    Popovski, Petar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 6796 - 6800
  • [48] Polaractivation for Classical Zero-Error Capacity of Qudit Channels
    Gyongyosi, Laszlo
    Imre, Sandor
    ELEVENTH INTERNATIONAL CONFERENCE ON QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTATION (QCMC), 2014, 1633 : 159 - 161
  • [49] Zero-error capacity of quantum channels and noiseless subsystems
    Medeiros, Rex A. C.
    Alleaume, Romain
    Cohen, Gerard
    de Assis, Francisco M.
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 895 - +
  • [50] Generic Reed-Solomon Codes Achieve List-Decoding Capacity
    Brakensiek, Joshua
    Gopi, Sivakanth
    Makam, Visu
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1488 - 1501