An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel

被引:6
|
作者
Dalai, Marco [1 ]
Guruswami, Venkatesan [2 ]
Radhakrishnan, Jaikumar [3 ]
机构
[1] Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy
[2] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
[3] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Mumbai 400005, Maharashtra, India
关键词
Upper bound; Decoding; Channel capacity; Bipartite graph; TV; Size measurement; 3G mobile communication; Perfect hashing; zero-error capacity; list decoding;
D O I
10.1109/TIT.2019.2933424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a new upper bound on the size of codes $C \subseteq \{1,2,3,4\}<^>{n}$ with the property that every four distinct codewords in $C$ have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most $2<^>{6n/19 + o(n)}$ , that is, rate bounded asymptotically by 6/19 <= 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Koml & x00F3;s, 1984) and (K & x00F6;rner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.
引用
收藏
页码:749 / 756
页数:8
相关论文
共 50 条
  • [21] On quantum zero-error capacity
    Shirokov, M. E.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (01) : 176 - 178
  • [22] Zero-error capacity for models with memory and the enlightened dictator channel
    Ahlswede, R
    Cai, N
    Zhang, Z
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1250 - 1252
  • [23] Upper Bound on List-Decoding Radius of Binary Codes
    Polyanskiy, Yury
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1119 - 1128
  • [24] Upper bound on list-decoding radius of binary codes
    Polyanskiy, Yury
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2231 - 2235
  • [25] An Elias Bound on the Bhattacharyya Distance of Codes for Channels with a Zero-Error Capacity
    Dalai, Marco
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1276 - 1280
  • [26] The Birthday Problem and Zero-Error List Codes
    Noorzad, Parham
    Effros, Michelle
    Langberg, Michael
    Kostina, Victoria
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1648 - 1652
  • [27] Concatenated codes can achieve list-decoding capacity
    Guruswami, Venkatesan
    Rudra, Atri
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 258 - +
  • [28] Quantum zero-error capacity and HSW capacity
    Medeiros, RAC
    de Assis, FM
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 52 - 54
  • [29] The Birthday Problem and Zero-Error List Codes
    Noorzad, Parham
    Effros, Michelle
    Langberg, Michael
    Kostina, Victoria
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (09) : 5791 - 5803
  • [30] CAPACITY AND ZERO-ERROR CAPACITY OF ISING CHANNELS
    BERGER, T
    BONOMI, F
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (01) : 173 - 180