An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel

被引:6
|
作者
Dalai, Marco [1 ]
Guruswami, Venkatesan [2 ]
Radhakrishnan, Jaikumar [3 ]
机构
[1] Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy
[2] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
[3] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Mumbai 400005, Maharashtra, India
关键词
Upper bound; Decoding; Channel capacity; Bipartite graph; TV; Size measurement; 3G mobile communication; Perfect hashing; zero-error capacity; list decoding;
D O I
10.1109/TIT.2019.2933424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a new upper bound on the size of codes $C \subseteq \{1,2,3,4\}<^>{n}$ with the property that every four distinct codewords in $C$ have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most $2<^>{6n/19 + o(n)}$ , that is, rate bounded asymptotically by 6/19 <= 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Koml & x00F3;s, 1984) and (K & x00F6;rner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.
引用
收藏
页码:749 / 756
页数:8
相关论文
共 50 条
  • [31] Zero-Error Capacity of Duplication Channels
    Kovacevic, Mladen
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (10) : 6735 - 6742
  • [32] The Zero-Error Capacity of the Gelfand-Pinsker Channel with a Feedback Link
    Bracher, Annina
    Lapidoth, Amos
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1272 - 1276
  • [33] On the Zero-Error Capacity of the Modulo-Additive Noise Channel With Help
    Lapidoth, Amos
    Yan, Yiming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 4721 - 4730
  • [34] The zero-error capacity of compound channels
    Nayak, J
    Rose, K
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 378 - 378
  • [35] Zero-error list capacities of discrete memoryless channels
    Telatar, IE
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1977 - 1982
  • [36] On the zero-error capacity of channels with noisy feedback
    Asadi, Meysam
    Devroye, Natasha
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 642 - 649
  • [37] Computability of the Zero-Error Capacity with Kolmogorov Oracle
    Boche, Holger
    Deppe, Christian
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2020 - 2025
  • [38] Zero-error capacity for finite state channels with feedback and channel state information
    Zhao, Lei
    Permuter, Haim
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 707 - 711
  • [39] Secure Estimation and Zero-Error Secrecy Capacity
    Wiese, Moritz
    Oechtering, Tobias J.
    Johansson, Karl Henrik
    Papadimitratos, Panagiotis
    Sandberg, Henrik
    Skoglund, Mikael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) : 1047 - 1062
  • [40] List-Decoding of Binary Goppa Codes up to the Binary Johnson Bound
    Augot, Daniel
    Barbier, Morgan
    Couvreur, Alain
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,