An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel

被引:6
|
作者
Dalai, Marco [1 ]
Guruswami, Venkatesan [2 ]
Radhakrishnan, Jaikumar [3 ]
机构
[1] Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy
[2] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
[3] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Mumbai 400005, Maharashtra, India
关键词
Upper bound; Decoding; Channel capacity; Bipartite graph; TV; Size measurement; 3G mobile communication; Perfect hashing; zero-error capacity; list decoding;
D O I
10.1109/TIT.2019.2933424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a new upper bound on the size of codes $C \subseteq \{1,2,3,4\}<^>{n}$ with the property that every four distinct codewords in $C$ have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most $2<^>{6n/19 + o(n)}$ , that is, rate bounded asymptotically by 6/19 <= 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Koml & x00F3;s, 1984) and (K & x00F6;rner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.
引用
收藏
页码:749 / 756
页数:8
相关论文
共 50 条
  • [1] An improved bound on the zero-error list-decoding capacity of the 4/3 channel
    Dalai, Marco
    Guruswami, Venkatesan
    Radhakrishnan, Jaikumar
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1658 - 1662
  • [2] Bounds on the Zero-Error List-Decoding Capacity of the q/(q-1) Channel
    Bhandari, Siddharth
    Radhakrishnan, Jaikumar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 238 - 247
  • [3] Bounds on the Zero-Error List-Decoding Capacity of the q/(q-1) Channel
    Bhandari, Siddharth
    Radhakrishnan, Jaikumar
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 906 - 910
  • [4] Zero error list-decoding capacity of the q/(q-1) channel
    Chakraborty, Sourav
    Radhakrishnan, Jaikumar
    Raghunathan, Nandakumar
    Sasatte, Prashant
    FSTTCS 2006: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2006, 4337 : 129 - +
  • [5] AN UPPER BOUND ON THE ZERO-ERROR LIST-CODING CAPACITY
    ARIKAN, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) : 1237 - 1240
  • [6] ON LOWER BOUND OF ZERO-ERROR CAPACITY
    KORN, I
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) : 509 - +
  • [7] Zero-error capacity of a quantum channel
    Medeiros, RAC
    de Assis, FM
    TELECOMMUNICATIONS AND NETWORKING - ICT 2004, 2004, 3124 : 100 - 105
  • [8] Zero-Error Capacity of the Chemical Residual Channel
    Cao, Qi
    Zhou, Qiaoqiao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 854 - 864
  • [9] Capacity and zero-error capacity of the chemical channel with feedback
    Permuter, Haim
    Cuff, Paul
    Van Roy, Benjamin
    Weissman, Tsachy
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1866 - 1870
  • [10] List-Decoding Capacity of the Gaussian Arbitrarily-Varying Channel
    Hosseinigoki, Fatemeh
    Kosut, Oliver
    ENTROPY, 2019, 21 (06)