Low-energy inference machine with multilevel HfO2 RRAM arrays

被引:5
|
作者
Milo, V. [1 ]
Zambelli, C. [2 ]
Olivo, P. [2 ]
Perez, E. [3 ]
Ossorio, O. G. [4 ]
Wenger, Ch. [3 ,5 ]
Ielmini, D. [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informa & Bioingn, I-20133 Milan, Italy
[2] Univ Ferrara, Dipartimento Ingn, I-44121 Ferrara, Italy
[3] IHPLeibniz Inst Innovat Mikroelekt, Technol Pk 25, D-15236 Frankfurt, Germany
[4] Univ Valladolid, Dept Elect & Elect, Paseo Belen 15, Valladolid 47011, Spain
[5] Brandenburg Med Sch Theodor, Fehrbelliner Str 38, D-16816 Neuruppin, Germany
基金
欧洲研究理事会;
关键词
resistive switching memory (RRAM); artificial intelligence; machine learning; in-memory computing; neural network; backpropagation; energy efficiency;
D O I
10.1109/essderc.2019.8901818
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, artificial intelligence reached impressive milestones in many machine learning tasks such as the recognition of faces, objects, and speech. These achievements have been mostly demonstrated in software running on high-performance computers, such as the graphics processing unit (GPU) or the tensor processing unit (TPU). Novel hardware with inmemory processing is however more promising in view of the reduced latency and the improved energy efficiency. In this scenario, emerging memory technologies such as phase change memory (PCM) and resistive switching memory (RRAM), have been proposed for hardware accelerators of both learning and inference tasks. In this work, a multilevel 4kbit RRAM array is used to implement a 2-layer feedforward neural network trained with the MNIST dataset. The performance of the network in the inference mode is compared with recently proposed implementations using the same image dataset demonstrating the higher energy efficiency of our hardware, thanks to low current operation and an innovative multilevel programming scheme. These results support RRAM technology for in-memory hardware accelerators of machine learning.
引用
收藏
页码:174 / 177
页数:4
相关论文
共 50 条
  • [31] Analysis of RTN and cycling variability in HfO2 RRAM devices in LRS
    Puglisi, F. M.
    Pavan, P.
    Larcher, L.
    Padovani, A.
    PROCEEDINGS OF THE 2014 44TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2014), 2014, : 246 - 249
  • [32] Impact of electrode nature on the filament formation and variability in HfO2 RRAM
    Traore, B.
    Blaise, P.
    Vianello, E.
    Jalaguier, E.
    Molas, G.
    Nodin, J. F.
    Perniola, L.
    De Salvo, B.
    Nishi, Y.
    2014 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2014,
  • [33] HfO2/Al2O3 multilayer for RRAM arrays: a technique to improve tail-bit retention
    Huang, Xueyao
    Wu, Huaqiang
    Gao, Bin
    Sekar, Deepak C.
    Dai, Lingjun
    Kellam, Mark
    Bronner, Gary
    Deng, Ning
    Qian, He
    NANOTECHNOLOGY, 2016, 27 (39)
  • [34] Reliability of low current filamentary HfO2 RRAM discussed in the framework of the hourglass SET/RESET model
    Degraeve, R.
    Fantini, A.
    Chen, Y. Y.
    Clima, S.
    Govoreanu, B.
    Goux, L.
    Wouters, D. J.
    Roussel, Ph.
    Kar, G. S.
    Pourtois, G.
    Cosemans, S.
    Groeseneken, G.
    Jurczak, M.
    Altimime, L.
    2012 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP FINAL REPORT, 2012, : 3 - 8
  • [35] Low-Energy He+ Ions Induced Functionalization of the MoS2 Surface for ALD HfO2 Growth Enhancement
    Kozodaev, Maxim G.
    Lebedinskii, Yury Yu.
    Zabrosaev, Ivan V.
    Romanov, Roman I.
    Yakubovsky, Dmitry I.
    Novikov, Sergey M.
    Tatmyshevskiy, Mikhail K.
    Volkov, Valentyn S.
    Markeev, Andrey M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (34): : 17014 - 17020
  • [36] Single and complex devices on three topological configurations of HfO2 based RRAM
    Ossorio, Oscar G.
    Poblador, Samuel
    Vinuesa, Guillermo
    Duenas, Salvador
    Castan, Helena
    Maestro-Izquierdo, Marcos
    Bargallo, Mireia G.
    Campabadal, Francesca
    LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC 2020), 2020,
  • [37] Ti/HfO2 Based RRAM Operation Voltage Scaling for Embedded Memory
    Tsai, C. H.
    Chen, F. T.
    Lee, H. Y.
    Chen, Y. S.
    Tsai, K. H.
    Wu, T. Y.
    Rahaman, S. Z.
    Gu, P. Y.
    Chen, W. S.
    Chen, P. S.
    Lin, Z. H.
    Tseng, P. L.
    Lin, W. P.
    Lin, C. H.
    Sheu, S. S.
    Tsai, M. -J.
    Ku, T. K.
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2013 (CSTIC 2013), 2013, 52 (01): : 39 - 44
  • [38] THERMODYNAMICS OF VAPORIZATION OF HF AND HFO2 - DISSOCIATION ENERGY OF HFO
    PANISH, MB
    REIF, L
    JOURNAL OF CHEMICAL PHYSICS, 1963, 38 (01): : 253 - &
  • [39] lImprovement of HfO2 based RRAM array performances by local Si implantation
    Barlas, M.
    Grossi, A.
    Grenouillet, L.
    Vianello, E.
    Nolot, E.
    Vaxelaire, N.
    Blaise, P.
    Traore, B.
    Coignus, J.
    Perrin, F.
    Crochemore, R.
    Mazen, F.
    Lachal, L.
    Pauliac, S.
    Pellissier, C.
    Bernasconi, S.
    Chevalliez, S.
    Nodin, J. F.
    Perniola, L.
    Nowak, E.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [40] Resistive switching characteristics of HfO2 based bipolar nonvolatile RRAM cell
    Lata, Lalit Kumar
    Jain, Praveen K.
    Chand, Umesh
    Bhatia, Deepak
    Shariq, Mohammad
    MATERIALS TODAY-PROCEEDINGS, 2020, 30 : 217 - 220