Low-energy inference machine with multilevel HfO2 RRAM arrays

被引:5
|
作者
Milo, V. [1 ]
Zambelli, C. [2 ]
Olivo, P. [2 ]
Perez, E. [3 ]
Ossorio, O. G. [4 ]
Wenger, Ch. [3 ,5 ]
Ielmini, D. [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informa & Bioingn, I-20133 Milan, Italy
[2] Univ Ferrara, Dipartimento Ingn, I-44121 Ferrara, Italy
[3] IHPLeibniz Inst Innovat Mikroelekt, Technol Pk 25, D-15236 Frankfurt, Germany
[4] Univ Valladolid, Dept Elect & Elect, Paseo Belen 15, Valladolid 47011, Spain
[5] Brandenburg Med Sch Theodor, Fehrbelliner Str 38, D-16816 Neuruppin, Germany
基金
欧洲研究理事会;
关键词
resistive switching memory (RRAM); artificial intelligence; machine learning; in-memory computing; neural network; backpropagation; energy efficiency;
D O I
10.1109/essderc.2019.8901818
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, artificial intelligence reached impressive milestones in many machine learning tasks such as the recognition of faces, objects, and speech. These achievements have been mostly demonstrated in software running on high-performance computers, such as the graphics processing unit (GPU) or the tensor processing unit (TPU). Novel hardware with inmemory processing is however more promising in view of the reduced latency and the improved energy efficiency. In this scenario, emerging memory technologies such as phase change memory (PCM) and resistive switching memory (RRAM), have been proposed for hardware accelerators of both learning and inference tasks. In this work, a multilevel 4kbit RRAM array is used to implement a 2-layer feedforward neural network trained with the MNIST dataset. The performance of the network in the inference mode is compared with recently proposed implementations using the same image dataset demonstrating the higher energy efficiency of our hardware, thanks to low current operation and an innovative multilevel programming scheme. These results support RRAM technology for in-memory hardware accelerators of machine learning.
引用
收藏
页码:174 / 177
页数:4
相关论文
共 50 条
  • [21] Characterization of HfO2 dielectric films with low energy SIMS
    Jiang, Z. X.
    Kim, K.
    Lerma, J.
    Sieloff, D.
    Tseng, H.
    Hegde, R. I.
    Luo, T. Y.
    Yang, J. Y.
    Triyoso, D. H.
    Tobin, P. J.
    APPLIED SURFACE SCIENCE, 2006, 252 (19) : 7172 - 7175
  • [22] Variability and Energy Consumption Tradeoffs in Multilevel Programming of RRAM Arrays
    Perez, Eduardo
    Mahadevaiah, Mamathamba Kalishettyhalli
    Quesada, Emilio Perez-Bosch
    Wenger, Christian
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (06) : 2693 - 2698
  • [23] Contact size-dependent switching instabilities in HfO2 RRAM
    Baikov, Pavel
    Ranganathan, Kamalakannan
    Goldfarb, Ilan
    Ruzin, Arie
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (28) : 22230 - 22243
  • [24] Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM
    Cagli, C.
    Buckley, J.
    Jousseaume, V.
    Cabout, T.
    Salaun, A.
    Grampeix, H.
    Nodin, J. F.
    Feldis, H.
    Persico, A.
    Cluzel, J.
    Lorenzi, P.
    Massari, L.
    Rao, R.
    Irrera, F.
    Aussenac, F.
    Carabasse, C.
    Coue, M.
    Calka, P.
    Martinez, E.
    Perniola, L.
    Blaise, P.
    Fang, Z.
    Yu, Y. H.
    Ghibaudo, G.
    Deleruyelle, D.
    Bocquet, M.
    Mueller, C.
    Padovani, A.
    Pirrotta, O.
    Vandelli, L.
    Larcher, L.
    Reimbold, G.
    de Salvo, B.
    2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,
  • [25] A Fluctuation Model of a HfO2 RRAM Cell for Memory Circuit Designs
    Zhang, Feng
    Li, Linan
    Huo, Qiang
    Fang, Cong
    Ba, Wenqiang
    2019 16TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD 2019), 2019, : 209 - 212
  • [26] AC stress and electronic effects on SET switching of HfO2 RRAM
    Liu, Jen-Chieh
    Magyari-Kope, Blanka
    Qin, Shengjun
    Zheng, Xin
    Wong, H. -S. Philip
    Hou, Tuo-Hung
    APPLIED PHYSICS LETTERS, 2017, 111 (09)
  • [27] Intrinsic Program Instability in HfO2 RRAM and consequences on program algorithms
    Fantini, A.
    Gorine, G.
    Degraeve, R.
    Goux, L.
    Chen, C. Y.
    Redolfi, A.
    Clima, S.
    Cabrini, A.
    Torelli, G.
    Jurczak, M.
    2015 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2015,
  • [28] Contact size-dependent switching instabilities in HfO2 RRAM
    Pavel Baikov
    Kamalakannan Ranganathan
    Ilan Goldfarb
    Arie Ruzin
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 22230 - 22243
  • [29] Investigation of HfO2/Ti based Vertical RRAM - Performances and Variability
    Piccolboni, G.
    Molas, G.
    Carabasse, C.
    Nodin, J. F.
    Pellissier, C.
    Brianceau, P.
    Vianello, E.
    Pollet, O.
    Perrin, F.
    Cluzel, J.
    Toffoli, A.
    Aussenac, F.
    Delaye, V.
    Ghibaudo, G.
    De Salvo, B.
    Perniola, L.
    2014 14TH ANNUAL NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS), 2014,
  • [30] Instability of HfO2 RRAM devices: comparing RTN and cycling variability
    Puglisi, F. M.
    Larcher, L.
    Pavan, P.
    Padovani, A.
    Bersuker, G.
    2014 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2014,