On the chromatic vertex stability number of graphs

被引:4
|
作者
Akbari, Saieed [1 ]
Beikmohammadi, Arash [2 ]
Klavzar, Sandi [3 ,4 ,5 ]
Movarraei, Nazanin [6 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[5] Inst Math Phys & Mech, Ljubljana, Slovenia
[6] Yazd Univ, Dept Math, Yazd, Iran
关键词
D O I
10.1016/j.ejc.2021.103504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic vertex (resp. edge) stability number vs chi(G) (resp. es(chi)(G)) of a graph G is the minimum number of vertices (resp. edges) whose deletion results in a graph H with chi(H) = chi(G)-1. In the main result it is proved that if G is a graph with chi(G) & ISIN; { increment (G), increment (G) + 1}, then vs chi(G) =delta(G), where ivs chi(G) is the independent chromatic vertex stability number. The result need not hold for graphs G with chi(G) <= delta (G)+1 /2 & nbsp;. It is proved that if chi(G) > increment (G) 2 + 1, then vs chi(G) = es chi(G). A Nordhaus-Gaddum-type result on the chromatic vertex stability number is also given.(C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] On Game Chromatic Vertex-Critical Graphs
    Jakovac, Marko
    Stesl, Dasa
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [42] On incompactness for chromatic number of graphs
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 363 - 371
  • [43] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [44] Hat chromatic number of graphs
    Bosek, Bartlomiej
    Dudek, Andrzej
    Farnik, Michal
    Grytczuk, Jaroslaw
    Mazur, Przemyslaw
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [45] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296
  • [46] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122
  • [47] On Indicated Chromatic Number of Graphs
    S. Francis Raj
    R. Pandiya Raj
    H. P. Patil
    Graphs and Combinatorics, 2017, 33 : 203 - 219
  • [48] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457
  • [49] The Robust Chromatic Number of Graphs
    Bacso, Gabor
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [50] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):