On the chromatic vertex stability number of graphs

被引:4
|
作者
Akbari, Saieed [1 ]
Beikmohammadi, Arash [2 ]
Klavzar, Sandi [3 ,4 ,5 ]
Movarraei, Nazanin [6 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[5] Inst Math Phys & Mech, Ljubljana, Slovenia
[6] Yazd Univ, Dept Math, Yazd, Iran
关键词
D O I
10.1016/j.ejc.2021.103504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic vertex (resp. edge) stability number vs chi(G) (resp. es(chi)(G)) of a graph G is the minimum number of vertices (resp. edges) whose deletion results in a graph H with chi(H) = chi(G)-1. In the main result it is proved that if G is a graph with chi(G) & ISIN; { increment (G), increment (G) + 1}, then vs chi(G) =delta(G), where ivs chi(G) is the independent chromatic vertex stability number. The result need not hold for graphs G with chi(G) <= delta (G)+1 /2 & nbsp;. It is proved that if chi(G) > increment (G) 2 + 1, then vs chi(G) = es chi(G). A Nordhaus-Gaddum-type result on the chromatic vertex stability number is also given.(C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] New bounds for the b-chromatic number of vertex deleted graphs
    Del-Vecchio, Renata R.
    Kouider, Mekkia
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 108 - 113
  • [22] Critical graphs for the chromatic edge-stability number
    Bresar, Bostjan
    Klavzar, Sandi
    Movarraei, Nazanin
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [23] On critical graphs for the chromatic edge-stability number
    Lei, Hui
    Lian, Xiaopan
    Meng, Xianhao
    Shi, Yongtang
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [24] On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs
    Zhu, Enqiang
    Liu, Chanjuan
    Xu, Jin
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02): : 253 - 266
  • [25] GRAPHS WHICH ARE VERTEX-CRITICAL WITH RESPECT TO THE EDGE-CHROMATIC NUMBER
    HILTON, AJW
    JOHNSON, PD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 211 - 221
  • [26] On Adjacent Vertex-Distinguishing Total Chromatic Number of Generalized Petersen Graphs
    Zhu, Enqiang
    Jiang, Fei
    Li, Zepeng
    Shao, Zehui
    Xu, Jin
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 230 - 234
  • [27] A Note on the Adjacent Vertex Distinguishing Total Chromatic Number of Some Cubic Graphs
    Chen, Qin
    ARS COMBINATORIA, 2016, 124 : 319 - 327
  • [28] CHROMATIC NUMBER AND SOME MULTIPLICATIVE VERTEX-DEGREE-BASED INDICES OF GRAPHS
    Xu, Kexiang
    Tang, Kechao
    Das, Kinkar Ch.
    Yue, Huansong
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 323 - 333
  • [29] An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs
    Vuckovic, Bojan
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1472 - 1478
  • [30] On the chromatic number of graphs
    Butenko, S
    Festa, P
    Pardalos, PM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (01) : 51 - 67