On the chromatic vertex stability number of graphs

被引:4
|
作者
Akbari, Saieed [1 ]
Beikmohammadi, Arash [2 ]
Klavzar, Sandi [3 ,4 ,5 ]
Movarraei, Nazanin [6 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[5] Inst Math Phys & Mech, Ljubljana, Slovenia
[6] Yazd Univ, Dept Math, Yazd, Iran
关键词
D O I
10.1016/j.ejc.2021.103504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic vertex (resp. edge) stability number vs chi(G) (resp. es(chi)(G)) of a graph G is the minimum number of vertices (resp. edges) whose deletion results in a graph H with chi(H) = chi(G)-1. In the main result it is proved that if G is a graph with chi(G) & ISIN; { increment (G), increment (G) + 1}, then vs chi(G) =delta(G), where ivs chi(G) is the independent chromatic vertex stability number. The result need not hold for graphs G with chi(G) <= delta (G)+1 /2 & nbsp;. It is proved that if chi(G) > increment (G) 2 + 1, then vs chi(G) = es chi(G). A Nordhaus-Gaddum-type result on the chromatic vertex stability number is also given.(C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] On the Chromatic Number of Graphs
    S. Butenko
    P. Festa
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2001, 109 (1) : 69 - 83
  • [32] Upper Bounds on the D(β)-Vertex-Distinguishing Total-Chromatic Number of Graphs
    Liu Xin-sheng
    Zhu Zhi-qiang
    ARS COMBINATORIA, 2015, 119 : 403 - 411
  • [33] On vertex orderings and the stability number in triangle-free graphs
    Rautenbach, D
    DISCRETE MATHEMATICS, 2001, 231 (1-3) : 411 - 420
  • [34] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [35] The difference between game chromatic number and chromatic number of graphs
    Matsumoto, Naoki
    INFORMATION PROCESSING LETTERS, 2019, 151
  • [36] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [37] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583
  • [38] On Game Chromatic Vertex-Critical Graphs
    Marko Jakovac
    Daša Štesl
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [39] Packing chromatic vertex-critical graphs
    Klavžar, Sandi
    Rall, Douglas F.
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [40] Packing chromatic vertex-critical graphs
    Klavzar, Sandi
    Rall, Douglas F.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):