On the chromatic vertex stability number of graphs

被引:4
|
作者
Akbari, Saieed [1 ]
Beikmohammadi, Arash [2 ]
Klavzar, Sandi [3 ,4 ,5 ]
Movarraei, Nazanin [6 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[5] Inst Math Phys & Mech, Ljubljana, Slovenia
[6] Yazd Univ, Dept Math, Yazd, Iran
关键词
D O I
10.1016/j.ejc.2021.103504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic vertex (resp. edge) stability number vs chi(G) (resp. es(chi)(G)) of a graph G is the minimum number of vertices (resp. edges) whose deletion results in a graph H with chi(H) = chi(G)-1. In the main result it is proved that if G is a graph with chi(G) & ISIN; { increment (G), increment (G) + 1}, then vs chi(G) =delta(G), where ivs chi(G) is the independent chromatic vertex stability number. The result need not hold for graphs G with chi(G) <= delta (G)+1 /2 & nbsp;. It is proved that if chi(G) > increment (G) 2 + 1, then vs chi(G) = es chi(G). A Nordhaus-Gaddum-type result on the chromatic vertex stability number is also given.(C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On the edge chromatic vertex stability number of graphs
    Alikhani, Saeid
    Piri, Mohammad R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 29 - 34
  • [2] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 79 - 85
  • [3] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    Discrete Applied Mathematics, 2014, 179 : 79 - 85
  • [4] The Adjacent Vertex Distinguishing Total Chromatic Number of Graphs
    Wang, Zhiwen
    Zhu, Enqiang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [5] The adjacent vertex distinguishing total chromatic number of graphs
    Wang, Zhiwen
    Zhu, Enqiang
    2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, 2010,
  • [6] On the Chromatic Number of Graphs with Some Restriction of Vertex Degrees
    Selezneva, S. N.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2020, 162 (04): : 387 - 395
  • [7] On the adjacent vertex distinguishing edge chromatic number of graphs
    Wang, Zhiwen
    ARS COMBINATORIA, 2016, 124 : 379 - 388
  • [8] On the vertex face total chromatic number of planar graphs
    Wang, WF
    Liu, JZ
    JOURNAL OF GRAPH THEORY, 1996, 22 (01) : 29 - 37
  • [9] STABILITY NUMBER AND CHROMATIC NUMBER OF TOLERANCE GRAPHS
    NARASIMHAN, G
    MANBER, R
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) : 47 - 56
  • [10] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551