Scattering of solitons for coupled wave-particle equations

被引:9
|
作者
Imaykin, Valery [1 ]
Komech, Alexander [2 ,3 ]
Vainberg, Boris [4 ]
机构
[1] Tech Univ Munich, Fac Math, D-85747 Garching, Germany
[2] Univ Vienna, Fac Math, A-1010 Vienna, Austria
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] UNC Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
基金
美国国家科学基金会;
关键词
Infinite-dimensional Hamiltonian system; Field-particle interaction; Solitary manifold; Soliton-type asymptotics; Symplectic projection; Linearization; MULTICHANNEL NONLINEAR SCATTERING; ASYMPTOTIC STABILITY; SCHRODINGER-EQUATIONS; SOLITARY WAVES; GROUND-STATES; INSTABILITY; FIELD;
D O I
10.1016/j.jmaa.2011.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution to the free wave equation. It is assumed that the charge density satisfies Wiener condition which is a version of Fermi Golden Rule, and that the momenta of the charge distribution vanish up to the fourth order. The proof is based on a development of the general strategy introduced by Buslaev and Perelman: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:713 / 740
页数:28
相关论文
共 50 条
  • [41] WAVE-PARTICLE INTERACTIONS AT PLASMAPAUSE
    THORNE, RM
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (04): : 489 - +
  • [42] DEBROGLIE AND WAVE-PARTICLE DUALISM
    GUIDONE, M
    SCIENTIA, 1982, 117 (9-12): : 629 - 633
  • [43] Paradox in wave-particle duality
    Afshar, Shahriar S.
    Flores, Eduardo
    McDonald, Keith F.
    Knoesel, Ernst
    FOUNDATIONS OF PHYSICS, 2007, 37 (02) : 295 - 305
  • [44] Remarks on wave-particle duality
    Kamefuchi, S
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 484 - 486
  • [45] Paradox in Wave-Particle Duality
    Shahriar S. Afshar
    Eduardo Flores
    Keith F. McDonald
    Ernst Knoesel
    Foundations of Physics, 2007, 37 : 295 - 305
  • [46] No Paradox in Wave-Particle Duality
    Knight, Andrew
    FOUNDATIONS OF PHYSICS, 2020, 50 (11) : 1723 - 1727
  • [47] Wave-particle interactions in plasmas
    Koch, R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) : B329 - B345
  • [48] The genesis of wave-particle duality
    Bhuiyan, Abdul L.
    PHYSICS ESSAYS, 2011, 24 (01) : 16 - 19
  • [49] Wave-particle duality and the zitterbewegung
    Istituto Universitario Sophia, Via San Vito, 28 - Loppiano, Figline e Incisa Valdarno
    50064, Italy
    J. Phys. Conf. Ser., 1
  • [50] Enhancement of particle trapping in the wave-particle interaction
    Bachelard, R.
    Antoniazzi, A.
    Chandre, C.
    Fanelli, D.
    Vittot, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) : 660 - 665