Scattering of solitons for coupled wave-particle equations

被引:9
|
作者
Imaykin, Valery [1 ]
Komech, Alexander [2 ,3 ]
Vainberg, Boris [4 ]
机构
[1] Tech Univ Munich, Fac Math, D-85747 Garching, Germany
[2] Univ Vienna, Fac Math, A-1010 Vienna, Austria
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] UNC Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
基金
美国国家科学基金会;
关键词
Infinite-dimensional Hamiltonian system; Field-particle interaction; Solitary manifold; Soliton-type asymptotics; Symplectic projection; Linearization; MULTICHANNEL NONLINEAR SCATTERING; ASYMPTOTIC STABILITY; SCHRODINGER-EQUATIONS; SOLITARY WAVES; GROUND-STATES; INSTABILITY; FIELD;
D O I
10.1016/j.jmaa.2011.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution to the free wave equation. It is assumed that the charge density satisfies Wiener condition which is a version of Fermi Golden Rule, and that the momenta of the charge distribution vanish up to the fourth order. The proof is based on a development of the general strategy introduced by Buslaev and Perelman: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:713 / 740
页数:28
相关论文
共 50 条
  • [11] Wave-particle duality of solitons and solitonic analog of the Ramsauer-Townsend effect
    Belyaeva, T. L.
    Serkin, V. N.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (06):
  • [12] Wave-particle duality of solitons and solitonic analog of the Ramsauer-Townsend effect
    T. L. Belyaeva
    V. N. Serkin
    The European Physical Journal D, 2012, 66
  • [13] Wave-particle interaction
    Skiff, F
    Ng, CS
    Bhattacharjee, A
    Noonan, WA
    Case, A
    PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 : B27 - B35
  • [14] On Scattering of Solitons for the Klein–Gordon Equation Coupled to a Particle
    Valery Imaikin
    Alexander Komech
    Boris Vainberg
    Communications in Mathematical Physics, 2006, 268
  • [15] The wave-particle duality
    D. A. Slavnov
    Physics of Particles and Nuclei, 2015, 46 : 665 - 677
  • [16] Scattering of solitons for the Schrödinger equation coupled to a particle
    A. Komech
    E. Kopylova
    Russian Journal of Mathematical Physics, 2006, 13 : 158 - 187
  • [17] The wave-particle duality
    Slavnov, D. A.
    PHYSICS OF PARTICLES AND NUCLEI, 2015, 46 (04) : 665 - 677
  • [18] On wave-particle duality
    Renninger, M.
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 4, 2007, 962 : 3 - 8
  • [19] WAVE-PARTICLE DUALITY
    REDHEAD, MLG
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 1977, 28 (01): : 65 - 73
  • [20] WAVE-PARTICLE DUALITY
    BLAQUIER.A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (23): : 1437 - &