Scattering of solitons for coupled wave-particle equations

被引:9
|
作者
Imaykin, Valery [1 ]
Komech, Alexander [2 ,3 ]
Vainberg, Boris [4 ]
机构
[1] Tech Univ Munich, Fac Math, D-85747 Garching, Germany
[2] Univ Vienna, Fac Math, A-1010 Vienna, Austria
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] UNC Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
基金
美国国家科学基金会;
关键词
Infinite-dimensional Hamiltonian system; Field-particle interaction; Solitary manifold; Soliton-type asymptotics; Symplectic projection; Linearization; MULTICHANNEL NONLINEAR SCATTERING; ASYMPTOTIC STABILITY; SCHRODINGER-EQUATIONS; SOLITARY WAVES; GROUND-STATES; INSTABILITY; FIELD;
D O I
10.1016/j.jmaa.2011.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution to the free wave equation. It is assumed that the charge density satisfies Wiener condition which is a version of Fermi Golden Rule, and that the momenta of the charge distribution vanish up to the fourth order. The proof is based on a development of the general strategy introduced by Buslaev and Perelman: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:713 / 740
页数:28
相关论文
共 50 条
  • [31] Plurality of wave-particle duality
    Bhatta, Varun S.
    CURRENT SCIENCE, 2020, 118 (09): : 1365 - 1374
  • [32] WAVE-PARTICLE CHAOS IN THE MAGNETOSPHERE
    PRAKASH, M
    PHYSICA D, 1994, 77 (1-3): : 261 - 267
  • [33] WAVE-PARTICLE INTERACTION STUDIES
    STERN, RA
    HILL, DN
    RYNN, N
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1037 - 1037
  • [34] AMPLIFICATION AND THE WAVE-PARTICLE DUALITY
    SWANSON, RC
    CARLSTEN, JL
    PHYSICAL REVIEW A, 1993, 47 (03): : 2211 - 2220
  • [35] Heisenberg and the wave-particle duality
    Camilleri, Kristian
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2006, 37 (02): : 298 - 315
  • [36] The wave-particle dilemma in light
    Persson, John-Erik
    PHYSICS ESSAYS, 2021, 34 (02) : 211 - 217
  • [37] Wave-particle duality revisited
    Arbab, A., I
    Mohamed, Fatma O.
    OPTIK, 2021, 248
  • [38] Quantitative wave-particle duality
    Qureshi, Tabish
    AMERICAN JOURNAL OF PHYSICS, 2016, 84 (07) : 517 - 521
  • [39] Wave-particle interactions in tokamaks
    Shaing, K. C.
    Garcia-Munoz, M.
    Viezzer, E.
    Harvey, R. W.
    NUCLEAR FUSION, 2024, 64 (06)
  • [40] COHERENT WAVE-PARTICLE INTERACTIONS
    THOMPSON, WB
    NUCLEAR FUSION, 1973, 13 (06) : 946 - 946