Mutually orthogonal latin squares with large holes

被引:4
|
作者
Dukes, Peter J. [1 ]
van Bommel, Christopher M. [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Latin square; Hole; Pairwise balanced design; EXISTENCE;
D O I
10.1016/j.jspi.2014.10.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. This definition extends naturally to 'incomplete' latin squares each having a hole on the same rows, columns, and symbols. If an incomplete latin square of order n has a hole of order m, then it is an easy observation that n >= 2m. More generally, if a set oft incomplete mutually orthogonal latin squares of order n have a common hole of order in, then n >= (t + 1)m. In this article, we prove such sets of incomplete squares exist for all n, m >> 0 satisfying n >= 8(t + 1)(2)m. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条