Mutually orthogonal latin squares with large holes

被引:4
|
作者
Dukes, Peter J. [1 ]
van Bommel, Christopher M. [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Latin square; Hole; Pairwise balanced design; EXISTENCE;
D O I
10.1016/j.jspi.2014.10.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. This definition extends naturally to 'incomplete' latin squares each having a hole on the same rows, columns, and symbols. If an incomplete latin square of order n has a hole of order m, then it is an easy observation that n >= 2m. More generally, if a set oft incomplete mutually orthogonal latin squares of order n have a common hole of order in, then n >= (t + 1)m. In this article, we prove such sets of incomplete squares exist for all n, m >> 0 satisfying n >= 8(t + 1)(2)m. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [31] On the maximality of a set of mutually orthogonal Sudoku Latin Squares
    Jozefien D’haeseleer
    Klaus Metsch
    Leo Storme
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2017, 84 : 143 - 152
  • [32] Mutually orthogonal latin squares: a brief survey of constructions
    Colbourn, CJ
    Dinitz, JH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 95 (1-2) : 9 - 48
  • [33] Three new constructions of mutually orthogonal Latin squares
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (03) : 218 - 220
  • [34] Concerning seven and eight Mutually Orthogonal Latin Squares
    Abel, RJR
    Colbourn, CJ
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (02) : 123 - 131
  • [35] Four Mutually Orthogonal Latin Squares of Order 14
    Todorov, D. T.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (08) : 363 - 367
  • [36] Five mutually orthogonal Latin squares of order 35
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 1996, 4 (02) : 153 - 154
  • [37] INFINITE LATIN SQUARES CONTAINING NESTED SETS OF MUTUALLY ORTHOGONAL FINITE LATIN SQUARES
    BRAWLEY, JV
    MULLEN, GL
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 39 (1-2): : 135 - 141
  • [38] Further Results on Mutually Nearly Orthogonal Latin Squares
    Ke-jun CHEN
    Yong ZHANG
    Guang-zhou CHEN
    Wen LI
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 209 - 220
  • [39] Further Results on Mutually Nearly Orthogonal Latin Squares
    Chen, Ke-jun
    Zhang, Yong
    Chen, Guang-zhou
    Li, Wen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 209 - 220
  • [40] On the maximality of a set of mutually orthogonal Sudoku Latin Squares
    D'haeseleer, Jozefien
    Metsch, Klaus
    Storme, Leo
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 143 - 152