Mutually orthogonal latin squares with large holes

被引:4
|
作者
Dukes, Peter J. [1 ]
van Bommel, Christopher M. [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Latin square; Hole; Pairwise balanced design; EXISTENCE;
D O I
10.1016/j.jspi.2014.10.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. This definition extends naturally to 'incomplete' latin squares each having a hole on the same rows, columns, and symbols. If an incomplete latin square of order n has a hole of order m, then it is an easy observation that n >= 2m. More generally, if a set oft incomplete mutually orthogonal latin squares of order n have a common hole of order in, then n >= (t + 1)m. In this article, we prove such sets of incomplete squares exist for all n, m >> 0 satisfying n >= 8(t + 1)(2)m. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [21] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Song, Yi-yang
    Zhang, Gui-jun
    Xu, Ling-shan
    Tao, Yuan-hong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1777 - 1787
  • [22] Further results on mutually nearly orthogonal Latin squares
    Ke-jun Chen
    Yong Zhang
    Guang-zhou Chen
    Wen Li
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 209 - 220
  • [23] Mutually nearly orthogonal Latin squares of order 6
    Pasles, EB
    Raghavarao, D
    UTILITAS MATHEMATICA, 2004, 65 : 65 - 72
  • [24] SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES WITH LIKE SUBSQUARES
    ROBERTS, CE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (01) : 50 - 63
  • [25] Mutually orthogonal latin squares based on cellular automata
    Mariot, Luca
    Gadouleau, Maximilien
    Formenti, Enrico
    Leporati, Alberto
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) : 391 - 411
  • [26] MAXIMAL SETS OF MUTUALLY ORTHOGONAL IDEMPOTENT LATIN SQUARES
    MENDELSOHN, NS
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03): : 449 - +
  • [27] 4 MUTUALLY ORTHOGONAL LATIN SQUARES OF ORDER 20
    TODOROV, DT
    ARS COMBINATORIA, 1989, 27 : 63 - 65
  • [28] Mutually orthogonal latin squares based on cellular automata
    Luca Mariot
    Maximilien Gadouleau
    Enrico Formenti
    Alberto Leporati
    Designs, Codes and Cryptography, 2020, 88 : 391 - 411
  • [29] The enumeration of cyclic mutually nearly orthogonal Latin squares
    Demirkale, Fatih
    Donovan, Diane M.
    Kokkala, Janne I.
    Marbach, Trent G.
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (05) : 265 - 276
  • [30] Six mutually orthogonal Latin squares of order 48
    Wojtas, M
    JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (06) : 463 - 466